Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. It is a methyl ester of the aspartic acid/phenylalanine dipeptide with brand names NutraSweet, Equal, and Canderel. Aspartame was approved by the US Food and Drug Administration (FDA) in 1974, and then again in 1981, after approval was revoked in 1980.
Aspartame is one of the most studied food additives in the human food supply. Reviews by over 100 governmental regulatory bodies found the ingredient safe for consumption at the normal acceptable daily intake (ADI) limit.
Aspartame is around 180 to 200 times sweeter than sucrose (table sugar). Due to this property, even though aspartame produces of energy per gram when metabolized, about the same as sucrose, the quantity of aspartame needed to produce a sweet taste is so small that its caloric contribution is negligible. The sweetness of aspartame lasts longer than that of sucrose, so it is often blended with other artificial sweeteners such as acesulfame potassium to produce an overall taste more like that of sugar.
Like many other peptides, aspartame may hydrolyze (break down) into its constituent amino acids under conditions of elevated temperature or high pH. This makes aspartame undesirable as a baking sweetener and prone to degradation in products hosting a high pH, as required for a long shelf life. The stability of aspartame under heating can be improved to some extent by encasing it in fats or in maltodextrin. The stability when dissolved in water depends markedly on pH. At room temperature, it is most stable at pH 4.3, where its half-life is nearly 300 days. At pH 7, however, its half-life is only a few days. Most soft-drinks have a pH between 3 and 5, where aspartame is reasonably stable. In products that may require a longer shelf life, such as syrups for fountain beverages, aspartame is sometimes blended with a more stable sweetener, such as saccharin.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course will deliver basic knowledge on the principles of food fermentation and enzyme technology. The course will also present benefits that food biotechnology can bring in terms of Nutrition & He
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
Les constituants biochimiques de l'organisme, protéines, glucides, lipides, à la lumière de l'évolution des concepts et des progrès en biologie moléculaire et génétique, sont étudiés.
Explores the microbial transformations and health benefits of fermented foods, emphasizing their potential as delivery vehicles for probiotics to underserved communities.
Explores protein folding, amino acids, RNA translation, and attractive forces, emphasizing the importance of native state conformation and compact structures.
Monitoring metabolites at the point of care could improve the diagnosis and management of numerous diseases. Yet for most metabolites, such assays are not available. We introduce semisynthetic, light-emitting sensor proteins for use in paper-based metaboli ...
Sugars are important energy sources, but high sugar intake poses a metabolic challenge and leads to diseases. Drosophila melanogaster is a generalist fruit breeder that encounters high levels of dietary sugars in its natural habitat. Consequently, Drosophi ...
Elsevier2017
, ,
A photoredox-catalyzed oxidative decarboxylative coupling of small peptides is reported, giving access to a variety of N,O-acetals. They were used as intermediates for the addition of phenols and indoles, leading to novel peptide scaffolds and bioconjugate ...
A sugar substitute is a food additive that provides a sweetness like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie (non-nutritive) or low-calorie sweetener. Artificial sweeteners may be derived through manufacturing of plant extracts or processed by chemical synthesis. Sugar substitute products are commercially available in various forms, such as small pills, powders, and packets.
Phenylalanine (symbol Phe or F) is an essential α-amino acid with the formula C9H11NO2. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amino acid is classified as neutral, and nonpolar because of the inert and hydrophobic nature of the benzyl side chain. The L-isomer is used to biochemically form proteins coded for by DNA.
Sweetness is a basic taste most commonly perceived when eating foods rich in sugars. Sweet tastes are generally regarded as pleasurable. In addition to sugars like sucrose, many other chemical compounds are sweet, including aldehydes, ketones, and sugar alcohols. Some are sweet at very low concentrations, allowing their use as non-caloric sugar substitutes. Such non-sugar sweeteners include saccharin and aspartame. Other compounds, such as miraculin, may alter perception of sweetness itself.