Concept

Statistical model

Related publications (1,000)

Primary and secondary order parameters in the fully frustrated transverse-field Ising model on the square lattice

Frédéric Mila

Using quantum Monte Carlo simulations and field-theory arguments, we study the fully frustrated transversefield Ising model on the square lattice for the purpose of quantitatively relating two different order parameters to each other. We consider a "primar ...
Amer Physical Soc2024

Fair real-time control of energy storage systems in active distribution networks in the presence of uncertainties

Plouton Grammatikos

The thesis explores the issue of fairness in the real-time (RT) control of battery energy storage systems (BESSs) hosted in active distribution networks (ADNs) in the presence of uncertainties by proposing and experimentally validating appropriate control ...
EPFL2024

Spectral Estimators for High-Dimensional Matrix Inference

Farzad Pourkamali

A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
EPFL2024

Discrete choice modeling in the era of big data

Nicola Marco Ortelli

The technological advancements of the past decades have allowed transforming an increasing part of our daily actions and decisions into storable data, leading to a radical change in the scale and scope of available data in relation to virtually any object ...
EPFL2024

Performing and Detecting Backdoor Attacks on Face Recognition Algorithms

Alexander Carl Unnervik

The field of biometrics, and especially face recognition, has seen a wide-spread adoption the last few years, from access control on personal devices such as phones and laptops, to automated border controls such as in airports. The stakes are increasingly ...
EPFL2024

Statistical Inference for Inverse Problems: From Sparsity-Based Methods to Neural Networks

Pakshal Narendra Bohra

In inverse problems, the task is to reconstruct an unknown signal from its possibly noise-corrupted measurements. Penalized-likelihood-based estimation and Bayesian estimation are two powerful statistical paradigms for the resolution of such problems. They ...
EPFL2024

An improved statistical wake meandering model

Fernando Porté Agel, Peter Andreas Brugger, Corey Dean Markfort

A new statistical wake meandering (SWM) model is proposed that improves on existing models in the literature. Compared to the existing SWM models, the proposed model has a closed description that does not require simulations to create look-up tables while ...
IOP Publishing2024

Training a Filter-Based Model of the Cochlea in the Context of Pre-Trained Acoustic Models

Philip Neil Garner

Auditory research aims in general to lead to understanding of physiological processes. By contrast, the state of the art in automatic speech processing (notably recognition) is dominated by large pre-trained models that are meant to be used as black-boxes. ...
2024

Robot Learning using Tensor Networks

Suhan Narayana Shetty

In various robotics applications, the selection of function approximation methods greatly influences the feasibility and computational efficiency of algorithms. Tensor Networks (TNs), also referred to as tensor decomposition techniques, present a versatile ...
EPFL2024

Land Cover Mapping From Multiple Complementary Experts Under Heavy Class Imbalance

Devis Tuia, Valérie Zermatten, Javiera Francisca Castillo Navarro, Xiaolong Lu

Deep learning has emerged as a promising avenue for automatic mapping, demonstrating high efficacy in land cover categorization through various semantic segmentation models. Nonetheless, the practical deployment of these models encounters important challen ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.