A Walrasian auction, introduced by Léon Walras, is a type of simultaneous auction where each agent calculates its demand for the good at every possible price and submits this to an auctioneer. The price is then set so that the total demand across all agents equals the total amount of the good. Thus, a Walrasian auction perfectly matches the supply and the demand.
Walras suggested that equilibrium would always be achieved through a process of tâtonnement (French for "trial and error"), a form of hill climbing. More recently, however, the Sonnenschein–Mantel–Debreu theorem proved that such a process would not necessarily reach a unique and stable equilibrium, even if the market is populated with perfectly rational agents.
The Walrasian auctioneer is the presumed auctioneer that matches supply and demand in a market of perfect competition. The auctioneer provides for the features of perfect competition: perfect information and no transaction costs. The process is called tâtonnement, or groping, relating to finding the market clearing price for all commodities and giving rise to general equilibrium.
The device is an attempt to avoid one of deepest conceptual problems of perfect competition, which may, essentially, be defined by the stipulation that no agent can affect prices. But if no one can affect prices no one can change them, so prices cannot change. However, involving as it does an artificial solution, the device is less than entirely satisfactory.
Until Walker and van Daal's 2014 translation (retitled Elements of Theoretical Economics), William Jaffé's Elements of Pure Economics (1954) was for many years the only English translation of Walras's Éléments d’économie politique pure.
Walker and van Daal argue that the idea of the Walrasian auction and Walrasian auctioneer resulted from Jaffé's mistranslation of the French word crieurs (criers) into auctioneers. Walker and van Daal call this "a momentous error that has misled generations of readers into thinking that the markets in Walras's model are auction markets and that he assigned the function of changing prices in his model to an auctioneer.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Competitive equilibrium (also called: Walrasian equilibrium) is a concept of economic equilibrium, introduced by Kenneth Arrow and Gérard Debreu in 1951, appropriate for the analysis of commodity markets with flexible prices and many traders, and serving as the benchmark of efficiency in economic analysis. It relies crucially on the assumption of a competitive environment where each trader decides upon a quantity that is so small compared to the total quantity traded in the market that their individual transactions have no influence on the prices.
In economics, general equilibrium theory attempts to explain the behavior of supply, demand, and prices in a whole economy with several or many interacting markets, by seeking to prove that the interaction of demand and supply will result in an overall general equilibrium. General equilibrium theory contrasts with the theory of partial equilibrium, which analyzes a specific part of an economy while its other factors are held constant.
Explores the Capital Asset Pricing Model and the risk-return trade-off theory in financial economics, focusing on risk premiums and efficient portfolios.
Delves into the Capital Asset Pricing Model, market portfolio, Security Market Line, betas estimation, and liquidity risk.
In a multi-unit market, a seller brings multiple units of a good and tries to sell them to a set of buyers that have monetary endowments. While a Walrasian equilibrium does not always exist in this model, natural relaxations of the concept that retain its ...
AAAI Press Palo Alto2019
This article describes how prices are treated in economic theory. Section 17.2 begins by introducing the concepts of ‘rational preference’ and ‘utility function’, which are standard building blocks of models that attempt to explain choice behaviour. Sectio ...