Summary
Metallothionein (MT) is a family of cysteine-rich, low molecular weight (MW ranging from 500 to 14000 Da) proteins. They are localized to the membrane of the Golgi apparatus. MTs have the capacity to bind both physiological (such as zinc, copper, selenium) and xenobiotic (such as cadmium, mercury, silver, arsenic, lead) heavy metals through the thiol group of its cysteine residues, which represent nearly 30% of its constituent amino acid residues. MT was discovered in 1957 by Vallee and Margoshe from purification of a Cd-binding protein from horse (equine) renal cortex. MT plays a role in the protection against metal toxicity and oxidative stress, and is involved in zinc and copper regulation. There are four main isoforms expressed in humans (family 1, see chart below): MT1 (subtypes A, B, E, F, G, H, L, M, X), MT2, MT3, and MT4. In the human body, large quantities are synthesised primarily in the liver and kidneys. Their production is dependent on availability of the dietary minerals such as zinc, copper, and selenium, as well as the amino acids histidine and cysteine. Metallothioneins are rich in thiols, causing them to bind a number of trace metals. Metallothionein is one of the few eukaryotic proteins playing a substantial role in metal detoxification. Zinc and Cadmium are tetrahedrally coordinated to cysteine residues, and each metallothionein protein molecule may bind up to 7 atoms of Zn or Cd. The biosynthesis of metallothionein appears to increase several-fold during periods of oxidative stress to shield the cells against cytotoxicity and DNA damage. Metallothionein biosynthesis can also be induced by certain hormones, pharmaceuticals, alcohols, and other compounds. Metallothionein expression is upregulated during fetal development, particularly in liver tissue. MTs are present in a vast range of taxonomic groups, ranging from prokaryotes (such as the cyanobacteria Synechococcus sp.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.