Summary
Sailing employs the wind—acting on sails, wingsails or kites—to propel a craft on the surface of the water (sailing ship, sailboat, raft, windsurfer, or kitesurfer), on ice (iceboat) or on land (land yacht) over a chosen course, which is often part of a larger plan of navigation. From prehistory until the second half of the 19th century, sailing craft were the primary means of maritime trade and transportation; exploration across the seas and oceans was reliant on sail for anything other than the shortest distances. Naval power in this period used sail to varying degrees depending on the current technology, culminating in the gun-armed sailing warships of the Age of Sail. Sail was slowly replaced by steam as the method of propulsion for ships over the latter part of the 19th century – seeing a gradual improvement in the technology of steam through a number of stepwise developments. Steam allowed scheduled services that ran at higher average speeds than sailing vessels. Large improvements in fuel economy allowed steam to progressively outcompete sail in, ultimately, all commercial situations, giving ship-owning investors a better return on capital. In the 21st century, most sailing represents a form of recreation or sport. Recreational sailing or yachting can be divided into racing and cruising. Cruising can include extended offshore and ocean-crossing trips, coastal sailing within sight of land, and daysailing. Sailing relies on the physics of sails as they derive power from the wind, generating both lift and drag. On a given course, the sails are set to an angle that optimizes the development of wind power, as determined by the apparent wind, which is the wind as sensed from a moving vessel. The forces transmitted via the sails are resisted by forces from the hull, keel, and rudder of a sailing craft, by forces from skate runners of an iceboat, or by forces from wheels of a land sailing craft which are steering the course. This combination of forces means that it is possible to sail an upwind course as well as downwind.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
ME-201: Continuum mechanics
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Related publications (32)
Related concepts (27)
Sailboat
A sailboat or sailing boat is a boat propelled partly or entirely by sails and is smaller than a sailing ship. Distinctions in what constitutes a sailing boat and ship vary by region and maritime culture. List of sailing boat types Although sailboat terminology has varied across history, many terms have specific meanings in the context of modern yachting. A great number of sailboat-types may be distinguished by size, hull configuration, keel type, purpose, number and configuration of masts, and sail plan.
Cruising (maritime)
Cruising by boat is an activity that involves living for extended time on a vessel while traveling from place to place for pleasure. Cruising generally refers to trips of a few days or more, and can extend to round-the-world voyages. Boats were almost exclusively used for working purposes prior to the nineteenth century. In 1857, the philosopher Henry David Thoreau, with his book Canoeing in Wilderness chronicling his canoe voyaging in the wilderness of Maine, is considered the first to convey the enjoyment of spiritual and lifestyle aspects of cruising.
Wind
Wind is the natural movement of air or other gases relative to a planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few hours, to global winds resulting from the difference in absorption of solar energy between the climate zones on Earth. The two main causes of large-scale atmospheric circulation are the differential heating between the equator and the poles, and the rotation of the planet (Coriolis effect).
Show more