In mathematics, in the field of group theory, a quasinormal subgroup, or permutable subgroup, is a subgroup of a group that commutes (permutes) with every other subgroup with respect to the product of subgroups. The term quasinormal subgroup was introduced by Øystein Ore in 1937.
Two subgroups are said to permute (or commute) if any element from the first
subgroup, times an element of the second subgroup, can be written as an element of the second
subgroup, times an element of the first subgroup. That is, and
as subgroups of are said to commute if HK = KH, that is, any element of the form
with and can be written in the form
where and .
Every normal subgroup is quasinormal, because a normal subgroup commutes with every element of the group. The converse is not true. For instance, any extension of a cyclic -group by another cyclic -group for the same (odd) prime has the property that all its subgroups are quasinormal. However, not all of its subgroups need be normal.
Every quasinormal subgroup is a modular subgroup, that is, a modular element in the lattice of subgroups. This follows from the modular property of groups. If all subgroups are quasinormal, then the group is called an Iwasawa group—sometimes also called a modular group, although this latter term has other meanings.
In any group, every quasinormal subgroup is ascendant.
A conjugate permutable subgroup is one that commutes with all its conjugate subgroups. Every quasinormal subgroup is conjugate permutable.
Every quasinormal subgroup of a finite group is a subnormal subgroup. This follows from the somewhat stronger statement that every conjugate permutable subgroup is subnormal, which in turn follows from the statement that every maximal conjugate permutable subgroup is normal. (The finiteness is used crucially in the proofs.)
In summary, a subgroup H of a finite group G is permutable in G if and only if H is both modular and subnormal in G.
Permutability is not a transitive relation in general.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The microstructure of many alloys and ceramics are constituted of very fine intricate domains (variants) created by diffusive or displacive phase transformations. The course introduces the crystallogr
In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial order relation being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection. The dihedral group Dih4 has ten subgroups, counting itself and the trivial subgroup. Five of the eight group elements generate subgroups of order two, and the other two non-identity elements both generate the same cyclic subgroup of order four.
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup of the group is normal in if and only if for all and The usual notation for this relation is Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group.
A theorem of Drinfel'd (Drinfel'd (1993)) classifies the Poisson homogeneous spaces of a Poisson Lie group (G,πG) via a special class of Lagrangian subalgebras of the Drinfel'd double of its Lie bialgebra. This result is extended in Liu et al. (1998) to a ...
We examine how, in prime characteristic p, the group of endotrivial modules of a finite group G and the group of endotrivial modules of a quotient of G modulo a normal subgroup of order prime to p are related. There is always an inflation map, but examples ...