In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial order relation being set inclusion.
In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection.
The dihedral group Dih4 has ten subgroups, counting itself and the trivial subgroup. Five of the eight group elements generate subgroups of order two, and the other two non-identity elements both generate the same cyclic subgroup of order four. In addition, there are two subgroups of the form Z2 × Z2, generated by pairs of order-two elements. The lattice formed by these ten subgroups is shown in the illustration.
This example also shows that the lattice of all subgroups of a group is not a modular lattice in general. Indeed, this particular lattice contains the forbidden "pentagon" N5 as a sublattice.
For any A, B, and C subgroups of a group with A ≤ C (A subgroup of C) then AB ∩ C = A(B ∩ C); the multiplication here is the product of subgroups. This property has been called the modular property of groups or (Dedekind's) modular law (, ). Since for two normal subgroups the product is actually the smallest subgroup containing the two, the normal subgroups form a modular lattice.
The Lattice theorem establishes a Galois connection between the lattice of subgroups of a group and that of its quotients.
The Zassenhaus lemma gives an isomorphism between certain combinations of quotients and products in the lattice of subgroups.
In general, there is no restriction on the shape of the lattice of subgroups, in the sense that every lattice is isomorphic to a sublattice of the subgroup lattice of some group. Furthermore, every finite lattice is isomorphic to a sublattice of the subgroup lattice of some finite group .
Subgroups with certain properties form lattices, but other properties do not.
Normal subgroups always form a modular lattice. In fact, the essential property that guarantees that the lattice is modular is that subgroups commute with each other, i.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the branch of mathematics called order theory, a modular lattice is a lattice that satisfies the following self-dual condition, Modular lawa ≤ b implies a ∨ (x ∧ b) = (a ∨ x) ∧ b where x, a, b are arbitrary elements in the lattice, ≤ is the partial order, and ∨ and ∧ (called join and meet respectively) are the operations of the lattice. This phrasing emphasizes an interpretation in terms of projection onto the sublattice [a, b], a fact known as the diamond isomorphism theorem.
NOTOC In mathematics, a group is called an Iwasawa group, M-group or modular group if its lattice of subgroups is modular. Alternatively, a group G is called an Iwasawa group when every subgroup of G is permutable in G . proved that a p-group G is an Iwasawa group if and only if one of the following cases happens: G is a Dedekind group, or G contains an abelian normal subgroup N such that the quotient group G/N is a cyclic group and if q denotes a generator of G/N, then for all n ∈ N, q−1nq = n1+ps where s ≥ 1 in general, but s ≥ 2 for p=2.
In mathematics, in the field of group theory, a quasinormal subgroup, or permutable subgroup, is a subgroup of a group that commutes (permutes) with every other subgroup with respect to the product of subgroups. The term quasinormal subgroup was introduced by Øystein Ore in 1937. Two subgroups are said to permute (or commute) if any element from the first subgroup, times an element of the second subgroup, can be written as an element of the second subgroup, times an element of the first subgroup.
We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...
obtain algorithmically effective versions of the dense lattice sphere packings constructed from orders in Q-division rings by the first author. The lattices in question are lifts of suitable codes from prime characteristic to orders O in Q-division rings a ...
The Cremona group is the group of birational transformations of the complex projective plane. In this paper we classify its subgroups that consist only of elliptic elements using elementary model theory. This yields in particular a description of the struc ...