In optics, the corpuscular theory of light states that light is made up of small discrete particles called "corpuscles" (little particles) which travel in a straight line with a finite velocity and possess impetus. This was based on an alternate description of atomism of the time period.
Isaac Newton laid the foundations for this theory through his work in optics. This early conception of the particle theory of light was an early forerunner to the modern understanding of the photon. This theory came to dominate the conceptions of light in the eighteenth century, displacing the previously prominent vibration theories, where light was viewed as 'pressure' of the medium between the source and the receiver, first championed by René Descartes, and later in a more refined form by Christiaan Huygens. It would fall out of the spotlight in the early nineteenth century, as the wave theory of light amassed new experimental evidence.
Mechanical philosophy
In the early 17th century, natural philosophers began to develop new ways to understand nature gradually replacing Aristotelianism, which had been for centuries the dominant scientific theory, during the process known as the Scientific Revolution. Various European philosophers adopted what came to be known as mechanical philosophy sometime between around 1610 to 1650, which described the universe and its contents as a kind of large-scale mechanism, a philosophy that explained the universe is made with matter and motion. This mechanical philosophy was based on Epicureanism, and the work of Leucippus and his pupil Democritus and their atomism, in which everything in the universe, including a person's body, mind, soul and even thoughts, was made of atoms; very small particles of moving matter. During the early part of the 17th century, the atomistic portion of mechanical philosophy was largely developed by Gassendi, René Descartes and other atomists.
The core of Pierre Gassendi's philosophy is his atomist matter theory.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours a comme objectif de présenter les concepts nécessaires à la compréhension des principes fondamentaux qui permettent de prédire les propriétés d'un matériau. Ces concepts vous permettront de r
Lectures on the fundamental aspects of semiconductor physics and the main properties of the p-n junction that is at the heart of devices like LEDs & laser diodes. The last part deals with light-matter
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility). The "classical" in "classical mechanics" does not refer classical antiquity, as it might in, say, classical architecture.
Treatise on Light: In Which Are Explained the Causes of That Which Occurs in Reflection & Refraction (Traité de la Lumière: Où Sont Expliquées les Causes de ce qui Luy Arrive Dans la Reflexion & Dans la Refraction) is a book written by Dutch polymath Christiaan Huygens that was published in French in 1690. The book describes Huygens's conception of the nature of light propagation which makes it possible to explain the laws of geometrical optics shown in Descartes's Dioptrique, which Huygens aimed to replace.
Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light is a book by English natural philosopher Isaac Newton that was published in English in 1704 (a scholarly Latin translation appeared in 1706). The book analyzes the fundamental nature of light by means of the refraction of light with prisms and lenses, the diffraction of light by closely spaced sheets of glass, and the behaviour of color mixtures with spectral lights or pigment powders.
Explores the theoretical framework behind interband optical absorption in direct bandgap semiconductors, including the derivation of transition rates and absorption coefficients.
The invention relates to oblique transscleral illumination of an eye fundus with at least one physical point light source around the eye allowing for dark field imaging combined with optical coherence tomography imaging. ...
Maxwell's equations govern light propagation and its interaction with matter. Therefore, the solution of Maxwell's equations using computational electromagnetic simulations plays a critical role in understanding light-matter interaction and designing optic ...
AIP Publishing2022
,
Electro-adhesion (EA) is a low-power, tunable, fast and reversible electrically-controlled adhesion method, effective on both conducting and insulating objects. Typically, only the electro-adhesive detachment force, i.e., the force required to separate an ...