SubsequenceIn mathematics, a subsequence of a given sequence is a sequence that can be derived from the given sequence by deleting some or no elements without changing the order of the remaining elements. For example, the sequence is a subsequence of obtained after removal of elements and The relation of one sequence being the subsequence of another is a preorder. Subsequences can contain consecutive elements which were not consecutive in the original sequence.
Linear recurrence with constant coefficientsIn mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence. The polynomial's linearity means that each of its terms has degree 0 or 1.
Index setIn mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set A may be indexed or labeled by means of the elements of a set J, then J is an index set. The indexing consists of a surjective function from J onto A, and the indexed collection is typically called an indexed family, often written as {Aj}j∈J. An enumeration of a set S gives an index set , where f : J → S is the particular enumeration of S.
HyperintegerIn nonstandard analysis, a hyperinteger n is a hyperreal number that is equal to its own integer part. A hyperinteger may be either finite or infinite. A finite hyperinteger is an ordinary integer. An example of an infinite hyperinteger is given by the class of the sequence (1, 2, 3, ...) in the ultrapower construction of the hyperreals. The standard integer part function: is defined for all real x and equals the greatest integer not exceeding x.
Geometric progressionIn mathematics, a geometric progression, also known as a geometric sequence, is a sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with common ratio 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with common ratio 1/2. Examples of a geometric sequence are powers rk of a fixed non-zero number r, such as 2k and 3k.
Integer sequenceIn mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified explicitly by giving a formula for its nth term, or implicitly by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description. The sequence 0, 3, 8, 15, ... is formed according to the formula n2 − 1 for the nth term: an explicit definition.