In mathematics, a surjective function (also known as surjection, or onto function ˈɒn.tuː) is a function f such that every element y can be mapped from some element x such that f(x) = y. In other words, every element of the function's codomain is the of one element of its domain. It is not required that x be unique; the function f may map one or more elements of X to the same element of Y.
The term surjective and the related terms injective and bijective were introduced by Nicolas Bourbaki, a group of mainly French 20th-century mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word sur means over or above, and relates to the fact that the of the domain of a surjective function completely covers the function's codomain.
Any function induces a surjection by restricting its codomain to the image of its domain. Every surjective function has a right inverse assuming the axiom of choice, and every function with a right inverse is necessarily a surjection. The composition of surjective functions is always surjective. Any function can be decomposed into a surjection and an injection.
A surjective function is a function whose is equal to its codomain. Equivalently, a function with domain and codomain is surjective if for every in there exists at least one in with . Surjections are sometimes denoted by a two-headed rightwards arrow (), as in .
Symbolically,
If , then is said to be surjective if
For any set X, the identity function idX on X is surjective.
The function f : Z → {0, 1} defined by f(n) = n mod 2 (that is, even integers are mapped to 0 and odd integers to 1) is surjective.
The function f : R → R defined by f(x) = 2x + 1 is surjective (and even bijective), because for every real number y, we have an x such that f(x) = y: such an appropriate x is (y − 1)/2.
The function f : R → R defined by f(x) = x3 − 3x is surjective, because the pre-image of any real number y is the solution set of the cubic polynomial equation x3 − 3x − y = 0, and every cubic polynomial with real coefficients has at least one real root.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity).
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set; there are no unpaired elements between the two sets. In mathematical terms, a bijective function f: X → Y is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y.
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Let k be an algebraically closed field of characteristic p > 0. We give a birational characterization of ordinary abelian varieties over k: a smooth projective variety X is birational to an ordinary abelian variety if and only if kappa(S)(X) = 0 and b(1)(X ...
We show that for a surjective, separable morphism f of smooth projective varieties over a field of positive characteristic such that f(*) OX congruent to O-Y subadditivity of Kodaira dimension holds, provided the base is of general type and the Hasse-Witt ...
The melanization reaction is a rapid and important immune mechanism in arthropods. It results in the production of melanin at the site of injury and around invading microbes. The enzymes responsible for melanogenesis are phenoloxidases (PO), which catalyze ...