In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set; there are no unpaired elements between the two sets. In mathematical terms, a bijective function f: X → Y is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y. The term one-to-one correspondence must not be confused with one-to-one function (an injective function; see figures).
A bijection from the set X to the set Y has an inverse function from Y to X. If X and Y are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite sets.
A bijective function from a set to itself is also called a permutation, and the set of all permutations of a set forms the symmetric group.
Bijective functions are essential to many areas of mathematics including the definitions of isomorphisms, homeomorphisms, diffeomorphisms, permutation groups, and projective maps.
For a pairing between X and Y (where Y need not be different from X) to be a bijection, four properties must hold:
each element of X must be paired with at least one element of Y,
no element of X may be paired with more than one element of Y,
each element of Y must be paired with at least one element of X, and
no element of Y may be paired with more than one element of X.
Satisfying properties (1) and (2) means that a pairing is a function with domain X. It is more common to see properties (1) and (2) written as a single statement: Every element of X is paired with exactly one element of Y. Functions which satisfy property (3) are said to be "onto Y " and are called surjections (or surjective functions).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them.
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity).
A set is the mathematical model for a collection of different things; a set contains elements or members, which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics.
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
2023
PurposeIn this work, the limits of image reconstruction in k-space are explored when non-bijective gradient fields are used for spatial encoding. TheoryThe image space analogy between parallel imaging and imaging with non-bijective encoding fields is parti ...
Wiley-Blackwell2015
Explores cylindrical coordinates in R^3, emphasizing continuity and class C properties.
Covers the density theorem in representation theory, focusing on endomorphisms of simple finite-dimensional modules.
Explores limits and colimits in functor categories, focusing on equalizers, pullbacks, and their significance in category theory.
A subfamily {F-1, F-2, ..., F-vertical bar P vertical bar} subset of F is a copy of the poset P if there exists a bijection i : P -> {F-1, F-2, ..., F-vertical bar P vertical bar}, such that p