In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm. By definition, a Fredholm operator is a bounded linear operator T : X → Y between two Banach spaces with finite-dimensional kernel and finite-dimensional (algebraic) cokernel , and with closed range . The last condition is actually redundant.
The index of a Fredholm operator is the integer
or in other words,
Intuitively, Fredholm operators are those operators that are invertible "if finite-dimensional effects are ignored." The formally correct statement follows. A bounded operator T : X → Y between Banach spaces X and Y is Fredholm if and only if it is invertible modulo compact operators, i.e., if there exists a bounded linear operator
such that
are compact operators on X and Y respectively.
If a Fredholm operator is modified slightly, it stays Fredholm and its index remains the same. Formally: The set of Fredholm operators from X to Y is open in the Banach space L(X, Y) of bounded linear operators, equipped with the operator norm, and the index is locally constant. More precisely, if T0 is Fredholm from X to Y, there exists ε > 0 such that every T in L(X, Y) with ||T − T0|| < ε is Fredholm, with the same index as that of T0.
When T is Fredholm from X to Y and U Fredholm from Y to Z, then the composition is Fredholm from X to Z and
When T is Fredholm, the transpose (or adjoint) operator T ′ is Fredholm from Y ′ to X ′, and ind(T ′) = −ind(T). When X and Y are Hilbert spaces, the same conclusion holds for the Hermitian adjoint T∗.
When T is Fredholm and K a compact operator, then T + K is Fredholm. The index of T remains unchanged under such a compact perturbations of T. This follows from the fact that the index i(s) of T + s K is an integer defined for every s in [0, 1], and i(s) is locally constant, hence i(1) = i(0).
Invariance by perturbation is true for larger classes than the class of compact operators.