In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm. By definition, a Fredholm operator is a bounded linear operator T : X → Y between two Banach spaces with finite-dimensional kernel and finite-dimensional (algebraic) cokernel , and with closed range . The last condition is actually redundant. The index of a Fredholm operator is the integer or in other words, Intuitively, Fredholm operators are those operators that are invertible "if finite-dimensional effects are ignored." The formally correct statement follows. A bounded operator T : X → Y between Banach spaces X and Y is Fredholm if and only if it is invertible modulo compact operators, i.e., if there exists a bounded linear operator such that are compact operators on X and Y respectively. If a Fredholm operator is modified slightly, it stays Fredholm and its index remains the same. Formally: The set of Fredholm operators from X to Y is open in the Banach space L(X, Y) of bounded linear operators, equipped with the operator norm, and the index is locally constant. More precisely, if T0 is Fredholm from X to Y, there exists ε > 0 such that every T in L(X, Y) with ||T − T0|| < ε is Fredholm, with the same index as that of T0. When T is Fredholm from X to Y and U Fredholm from Y to Z, then the composition is Fredholm from X to Z and When T is Fredholm, the transpose (or adjoint) operator T ′ is Fredholm from Y ′ to X ′, and ind(T ′) = −ind(T). When X and Y are Hilbert spaces, the same conclusion holds for the Hermitian adjoint T∗. When T is Fredholm and K a compact operator, then T + K is Fredholm. The index of T remains unchanged under such a compact perturbations of T. This follows from the fact that the index i(s) of T + s K is an integer defined for every s in [0, 1], and i(s) is locally constant, hence i(1) = i(0). Invariance by perturbation is true for larger classes than the class of compact operators.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (17)
Related concepts (10)
Compact operator
In functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of (subsets with compact closure in ). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that are Banach, but the definition can be extended to more general spaces. Any bounded operator that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting.
Hilbert space
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
Integral transform
In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform. An integral transform is any transform of the following form: The input of this transform is a function , and the output is another function .
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.