Observable universeThe observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Initially, it was estimated that there may be 2 trillion galaxies in the observable universe, although that number was reduced in 2021 to only several hundred billion based on data from New Horizons.
Milky WayThe Milky Way is the galaxy that includes the Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλακτικὸς κύκλος (galaktikòs kýklos), meaning "milky circle". From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within.
UniverseThe universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. According to this theory, space and time emerged together 13.787billion years ago, and the universe has been expanding ever since the Big Bang. While the spatial size of the entire universe is unknown, it is possible to measure the size of the observable universe, which is approximately 93 billion light-years in diameter at the present day.
Hubble's lawHubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible spectrum. Hubble's law is considered the first observational basis for the expansion of the universe, and today it serves as one of the pieces of evidence most often cited in support of the Big Bang model.
Galaxy filamentIn cosmology, galaxy filaments are the largest known structures in the universe, consisting of walls of gravitationally bound galactic superclusters. These massive, thread-like formations can reach 80 megaparsecs h−1 (or of the order of 160 to 260 million light-years) and form the boundaries between voids. Galaxy filaments form the cosmic web and define the overall structure of the observable universe. Discovery of structures larger than superclusters began in the late-1980s. In 1987, astronomer R.
Expansion of the universeThe expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into" anything and does not require space to exist "outside" it. To any observer in the universe, it appears that all but the nearest galaxies (which are bound by gravity) recede at speeds that are proportional to their distance from the observer, on average.
Virgo ClusterThe Virgo Cluster is a large cluster of galaxies whose center is 53.8 ± 0.3 Mly (16.5 ± 0.1 Mpc) away in the constellation Virgo. Comprising approximately 1,300 (and possibly up to 2,000) member galaxies, the cluster forms the heart of the larger Virgo Supercluster, of which the Local Group (containing our Milky Way galaxy) is a member. The Local Group actually experiences the mass of the Virgo Supercluster as the Virgocentric flow. It is estimated that the Virgo Cluster's mass is 1.
Galaxy clusterA galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-largest known gravitationally bound structures in the universe after galaxy filaments and were believed to be the largest known structures in the universe until the 1980s, when superclusters were discovered. One of the key features of clusters is the intracluster medium (ICM).
BoötesBoötes (boʊˈoʊtiːz ) is a constellation in the northern sky, located between 0° and +60° declination, and 13 and 16 hours of right ascension on the celestial sphere. The name comes from Boōtēs, which comes from Boṓtēs 'herdsman' or 'plowman' (literally, 'ox-driver'; from βοῦς boûs 'cow'). One of the 48 constellations described by the 2nd-century astronomer Ptolemy, Boötes is now one of the 88 modern constellations. It contains the fourth-brightest star in the night sky, the orange giant Arcturus.
Local GroupThe Local Group is the galaxy group that includes the Milky Way. It has a total diameter of roughly , and a total mass of the order of . It consists of two collections of galaxies in a "dumbbell" shape; the Milky Way and its satellites form one lobe, and the Andromeda Galaxy and its satellites constitute the other. The two collections are separated by about and are moving toward one another with a velocity of 123km/s. The group itself is a part of the larger Virgo Supercluster, which may be a part of the Laniakea Supercluster.