Related courses (14)
EE-519: Bioelectronics and biomedical microelectronics
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
EE-427: Analog IC design (for MNIS)
This course deals with the analysis, design, and optimization of CMOS analog circuits, emphasizing low-power solutions required in a broad range of applications (e.g., IoT, wearables, Biosensors ...).
EE-203(b): Electronics II (for IC)
Maîtriser des blocs fonctionnels nécessitant un plus haut niveau d'abstraction. Réalisation de fonctions électroniques de haut niveau exploitant les amplificateurs opérationnels.
EE-523: Advanced analog integrated circuit design
Introduction to advanced topics in analog and mixed-signal CMOS circuits at the transistor level. The course will focus on practical aspects of IC design, quantitative performance measures, and design
EE-426: Radio frequency circuits design techniques
RF has changed our daily life in our ever connected wireless world (guess how many radios you have in your smartphone?). The goal of this course is to get familiar with RF design techniques in view of
NX-422: Neural interfaces
Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communicatio
EE-320: Analog IC design
Introduction to the design of analog CMOS integrated circuits at the transistor level. Understanding and design of basic structures.
EE-594: Smart sensors for IoT
This lecture provides insights in the design and technologies of Internet-of-Things sensor nodes, with focus on low power technologies. The lectures alternate every two weeks between sensing technolog
MICRO-428: Metrology
The course deals with the concept of measuring in different domains, particularly in the electrical, optical, and microscale domains. The course will end with a perspective on quantum measurements, wh
MICRO-461: Low-power radio design for IoT
The basic function of an IoT node is to collect data and send it through a wireless channel to the cloud. Since the power consumption of an IoT node is largely dominated by the wireless communication,

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.