In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.
English mathematician John Conway called it a deltille, named from the triangular shape of the Greek letter delta (Δ). The triangular tiling can also be called a kishextille by a kis operation that adds a center point and triangles to replace the faces of a hextille.
It is one of three regular tilings of the plane. The other two are the square tiling and the hexagonal tiling.
There are 9 distinct uniform colorings of a triangular tiling. (Naming the colors by indices on the 6 triangles around a vertex: 111111, 111112, 111212, 111213, 111222, 112122, 121212, 121213, 121314) Three of them can be derived from others by repeating colors: 111212 and 111112 from 121213 by combining 1 and 3, while 111213 is reduced from 121314.
There is one class of Archimedean colorings, 111112, (marked with a ) which is not 1-uniform, containing alternate rows of triangles where every third is colored. The example shown is 2-uniform, but there are infinitely many such Archimedean colorings that can be created by arbitrary horizontal shifts of the rows.
The vertex arrangement of the triangular tiling is called an A2 lattice. It is the 2-dimensional case of a simplectic honeycomb.
The A_ lattice (also called A_3) can be constructed by the union of all three A2 lattices, and equivalent to the A2 lattice.
= dual of =
The vertices of the triangular tiling are the centers of the densest possible circle packing. Every circle is in contact with 6 other circles in the packing (kissing number). The packing density is or 90.69%.
The voronoi cell of a triangular tiling is a hexagon, and so the voronoi tessellation, the hexagonal tiling, has a direct correspondence to the circle packings.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} (as a truncated triangular tiling). English mathematician John Conway called it a hextille. The internal angle of the hexagon is 120 degrees, so three hexagons at a point make a full 360 degrees. It is one of three regular tilings of the plane. The other two are the triangular tiling and the square tiling.
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille. The internal angle of the square is 90 degrees so four squares at a point make a full 360 degrees. It is one of three regular tilings of the plane. The other two are the triangular tiling and the hexagonal tiling. There are 9 distinct uniform colorings of a square tiling.
In geometry, a vertex configuration is a shorthand notation for representing the vertex figure of a polyhedron or tiling as the sequence of faces around a vertex. For uniform polyhedra there is only one vertex type and therefore the vertex configuration fully defines the polyhedron. (Chiral polyhedra exist in mirror-image pairs with the same vertex configuration.) A vertex configuration is given as a sequence of numbers representing the number of sides of the faces going around the vertex. The notation "a.
Cao and Yuan obtained a Blichfeldt-type result for the vertex set of the edge-to-edge tiling of the plane by regular hexagons. Observing that the vertex set of every Archimedean tiling is the union of translates of a fixed lattice, we take a more general v ...
In 1987, Affleck, Kennedy, Lieb, and Tasaki introduced the AKLT spin chain and proved that it has a spectral gap above the ground state. Their concurrent conjecture that the two-dimensional AKLT model on the hexagonal lattice is also gapped remains open. I ...
This paper explores the geometric optimization of a planar reciprocal frame (RF) floor framing structure, focusing on the triangular topology. The structural performance of the frames is computed and plotted against the geometric parameters for various loa ...