The slide rule (also known colloquially in the United States as a slipstick) is a mechanical calculator (one of the simplest analog computers) hand-operated by sliding two rulers to perform multiplication and division primarily, and possibly exponents, roots, logarithms, and trigonometry. It is not typically designed for addition or subtraction, which is usually performed using other methods, like using an abacus. Maximum accuracy for standard linear slide rules is about three decimal significant digits, while scientific notation is used to keep track of the order of magnitude of results.
Slide rules exist in a diverse range of styles and generally appear in a linear, circular or cylindrical form, with slide rule scales inscribed with standardized graduated markings. Slide rules manufactured for specialized fields such as aviation or finance typically feature additional scales that aid in specialized calculations particular to those fields. The slide rule is closely related to nomograms used for application-specific computations. Though similar in name and appearance to a standard ruler, the slide rule is not meant to be used for measuring length or drawing straight lines.
At its simplest, each number to be multiplied is represented by a length on a pair of parallel rulers that can slide past each other. As the rulers each have a logarithmic scale, it is possible to align them to read the sum of the numbers' logarithms, which according to the law of the logarithm of a product equals the product of the two numbers.
English mathematician and clergyman Reverend William Oughtred and others developed the slide rule in the 17th century based on the emerging work on logarithms by John Napier. Before the advent of the scientific pocket calculator, it was the most commonly used calculation tool in science and engineering. The slide rule's ease of use, ready availability, and low cost caused its use to continue to grow through the 1950s and 1960s, even as electronic computers were being gradually introduced.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture introduces the basic concepts used to describe the atomic or molecular structure of surfaces and interfaces and the underlying thermodynamic concepts. The influence of interfaces on the p
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
The slide rule (also known colloquially in the United States as a slipstick) is a mechanical calculator (one of the simplest analog computers) hand-operated by sliding two rulers to perform multiplication and division primarily, and possibly exponents, roots, logarithms, and trigonometry. It is not typically designed for addition or subtraction, which is usually performed using other methods, like using an abacus. Maximum accuracy for standard linear slide rules is about three decimal significant digits, while scientific notation is used to keep track of the order of magnitude of results.
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the hardware, operating system (main software), and peripheral equipment needed and used for full operation.
Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient. At an elementary level the division of two natural numbers is, among other possible interpretations, the process of calculating the number of times one number is contained within another. This number of times need not be an integer.
The pivot-slide model (Shegelski and Lozowski) successfully predicts the slide and curl distances of a curling rock. However, in this model, there is no dependence of the curl distance on the initial