SN 1987A was a type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately from Earth and was the closest observed supernova since Kepler's Supernova. 1987A's light reached Earth on February 23, 1987, and as the earliest supernova discovered that year, was labeled "1987A". Its brightness peaked in May, with an apparent magnitude of about 3.
It was the first supernova that modern astronomers were able to study in great detail, and its observations have provided much insight into core-collapse supernovae.
SN 1987A provided the first opportunity to confirm by direct observation the radioactive source of the energy for visible light emissions, by detecting predicted gamma-ray line radiation from two of its abundant radioactive nuclei. This proved the radioactive nature of the long-duration post-explosion glow of supernovae.
For over thirty years, the expected collapsed neutron star could not be found, but in 2019, indirect evidence for its presence was found with the Atacama Large Millimeter Array telescope, with further evidence found in 2021 using the Chandra and NuSTAR X-ray telescopes.
SN 1987A was discovered independently by Ian Shelton and Oscar Duhalde at the Las Campanas Observatory in Chile on February 24, 1987, and within the same 24 hours by Albert Jones in New Zealand.
Later investigations found photographs showing the supernova brightening rapidly early on February 23. On March 4–12, 1987, it was observed from space by Astron, the largest ultraviolet space telescope of that time.
Sanduleak -69 202
Four days after the event was recorded, the progenitor star was tentatively identified as Sanduleak −69 202 (Sk -69 202), a blue supergiant.
After the supernova faded, that identification was definitively confirmed by Sk −69 202 having disappeared. This was an unexpected identification, because models of high mass stellar evolution at the time did not predict that blue supergiants are susceptible to a supernova event.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
Astronomy is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, meteoroid, asteroid, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere.
Supernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. A massive star collapses at the end of its life, emitting on the order of 1058 neutrinos and antineutrinos in all lepton flavors. The luminosity of different neutrino and antineutrino species are roughly the same. They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds. The typical supernova neutrino energies are 10MeV.
A Type II supernova (plural: supernovae or supernovas) results from the rapid collapse and violent explosion of a massive star. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun () to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova.
High-resolution James Webb Space Telescope (JWST) observations can test confusion-limited Hubble Space Telescope (HST) observations for a photometric bias that could affect extragalactic Cepheids and the determination of the Hubble constant. We present JWS ...
Context. The infrared-radio correlation (IRRC) of star-forming galaxies can be used to estimate their star formation rate (SFR) based on the radio continuum luminosity at MHz-GHz frequencies. For its practical application in future deep radio surveys, it i ...
Les Ulis Cedex A2023
, ,
Next-generation spectroscopic surveys such as the MegaMapper, MUltiplexed Survey Telescope (MUST), MaunaKea Spectroscopic Explorer (MSE), and WideField Spectroscopic Telescope (WST) are foreseen to increase the number of galaxy/quasar redshifts by an order ...