Summary
In atmospheric science, the pressure gradient (typically of air but more generally of any fluid) is a physical quantity that describes in which direction and at what rate the pressure increases the most rapidly around a particular location. The pressure gradient is a dimensional quantity expressed in units of pascals per metre (Pa/m). Mathematically, it is the gradient of pressure as a function of position. The negative gradient of pressure is known as the force density. In petroleum geology and the petrochemical sciences pertaining to oil wells, and more specifically within hydrostatics, pressure gradients refer to the gradient of vertical pressure in a column of fluid within a wellbore and are generally expressed in pounds per square inch per foot (psi/ft). This column of fluid is subject to the compound pressure gradient of the overlying fluids. The path and geometry of the column is totally irrelevant; only the vertical depth of the column has any relevance to the vertical pressure of any point within its column and the pressure gradient for any given true vertical depth. The concept of a pressure gradient is a local characterisation of the air (more generally of the fluid under investigation). The pressure gradient is defined only at these spatial scales at which pressure (more generally fluid dynamics) itself is defined. Within planetary atmospheres (including the Earth's), the pressure gradient is a vector pointing roughly downwards, because the pressure changes most rapidly vertically, increasing downwards (see vertical pressure variation). The value of the strength (or norm) of the pressure gradient in the troposphere is typically of the order of 9 Pa/m (or 90 hPa/km). The pressure gradient often has a small but critical horizontal component, which is largely responsible for wind circulation in the atmosphere. The horizontal pressure gradient is a two-dimensional vector resulting from the projection of the pressure gradient onto a local horizontal plane.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.