Underwater photography is the process of taking photographs while under water. It is usually done while scuba diving, but can be done while diving on surface supply, snorkeling, swimming, from a submersible or remotely operated underwater vehicle, or from automated cameras lowered from the surface.
Underwater photography can also be categorised as an art form and a method for recording data.
Successful underwater imaging is usually done with specialized equipment and techniques. However, it offers exciting and rare photographic opportunities. Animals such as fish and marine mammals are common subjects, but photographers also pursue shipwrecks, submerged cave systems, underwater "landscapes", invertebrates, seaweeds, geological features, and portraits of fellow divers.
Some cameras are made for use underwater, including modern waterproof digital cameras. The first amphibious camera was the Calypso, reintroduced as the Nikonos in 1963. The Nikonos range was designed specifically for use underwater. Nikon ended the Nikonos series in 2001 and its use has declined, as has that of other 35mm film systems. Sea and Sea USA made the Motor Marine III, an amphibious range-finder camera for 35mm film.
Cameras made for dry work can also work underwater, protected by add-on housings, which are made for point and shoot cameras, compact cameras with full exposure controls, and single lens reflex cameras (SLRs). Most such housings are specific to the camera model. Materials range from relatively inexpensive injection moulded plastic to higher-priced die-cast or machined from solid aluminum. Housings allow many options: users can choose housings specific to their everyday "land" cameras and use any lens, provided that it fits or they use the appropriate lens port accessory. Underwater photographers generally use wide-angle lenses or macro lenses, both of which allow close focus and therefore a shorter distance to the subject, which reduces the loss of clarity to scattering. Digital media can hold many more shots than standard film (which rarely has more than 36 frames per roll).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface air supply, and therefore has a limited but variable endurance. The name "scuba", an acronym for "Self-Contained Underwater Breathing Apparatus", was coined by Christian J. Lambertsen in a patent submitted in 1952. Scuba divers carry their own source of breathing gas, usually compressed air, affording them greater independence and movement than surface-supplied divers, and more time underwater than free divers.
A diving regulator is a pressure regulator that controls the pressure of breathing gas for diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver, in which case it is called a scuba regulator, or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving.
Professional diving is underwater diving where the divers are paid for their work. The procedures are often regulated by legislation and codes of practice as it is an inherently hazardous occupation and the diver works as a member of a team. Due to the dangerous nature of some professional diving operations, specialized equipment such as an on-site hyperbaric chamber and diver-to-surface communication system is often required by law, and the mode of diving for some applications may be regulated.
Soft robots are being increasingly developed and deployed for underwater applications such as exploration, monitoring, and rescue owing to their innate compliance, mechanical and chemical stability, and waterproof properties. However, they are still predom ...
The main goal of my research is to establish guidelines for workplace design based on human biomechanics: specifically sitting workplaces and handling areas in 1/6G-1/3G (Moon, Mars) conditions. Such a workplace could be used in long-term space missions in ...
The remarkable adaptability observed in marine ecosystems has often inspired researchers when developing new soft materials. The research undertaken in this thesis explores how ion chelator pair interactions influence the mechanical properties of bioinspir ...