In mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: for a Grassmannian of -dimensional subspaces of , given a point in the Grassmannian corresponding to a -dimensional vector subspace , the fiber over is the subspace itself. In the case of projective space the tautological bundle is known as the tautological line bundle.
The tautological bundle is also called the universal bundle since any vector bundle (over a compact space) is a pullback of the tautological bundle; this is to say a Grassmannian is a classifying space for vector bundles. Because of this, the tautological bundle is important in the study of characteristic classes.
Tautological bundles are constructed both in algebraic topology and in algebraic geometry. In algebraic geometry, the tautological line bundle (as invertible sheaf) is
the dual of the hyperplane bundle or Serre's twisting sheaf . The hyperplane bundle is the line bundle corresponding to the hyperplane (divisor) in . The tautological line bundle and the hyperplane bundle are exactly the two generators of the Picard group of the projective space.
In Michael Atiyah's "K-theory", the tautological line bundle over a complex projective space is called the standard line bundle. The sphere bundle of the standard bundle is usually called the Hopf bundle. (cf. Bott generator.)
More generally, there are also tautological bundles on a projective bundle of a vector bundle as well as a Grassmann bundle.
The older term canonical bundle has dropped out of favour, on the grounds that canonical is heavily overloaded as it is, in mathematical terminology, and (worse) confusion with the canonical class in algebraic geometry could scarcely be avoided.
Grassmannians by definition are the parameter spaces for linear subspaces, of a given dimension, in a given vector space . If is a Grassmannian, and is the subspace of corresponding to in , this is already almost the data required for a vector bundle: namely a vector space for each point , varying continuously.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We will study classical and modern deformation theory of schemes and coherent sheaves. Participants should have a solid background in scheme-theory, for example being familiar with the first 3 chapter
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
In mathematics, the Stiefel manifold is the set of all orthonormal k-frames in That is, it is the set of ordered orthonormal k-tuples of vectors in It is named after Swiss mathematician Eduard Stiefel. Likewise one can define the complex Stiefel manifold of orthonormal k-frames in and the quaternionic Stiefel manifold of orthonormal k-frames in . More generally, the construction applies to any real, complex, or quaternionic inner product space.
In mathematics, the Euler sequence is a particular exact sequence of sheaves on n-dimensional projective space over a ring. It shows that the sheaf of relative differentials is stably isomorphic to an -fold sum of the dual of the Serre twisting sheaf. The Euler sequence generalizes to that of a projective bundle as well as a Grassmann bundle (see the latter article for this generalization.) Let be the n-dimensional projective space over a commutative ring A. Let be the sheaf of 1-differentials on this space, and so on.
In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory. In this article, all rings will be assumed to be commutative and with identity. Let be a graded ring, whereis the direct sum decomposition associated with the gradation.
We prove that smooth, projective, K-trivial, weakly ordinary varieties over a perfect field of characteristic p>0 are not geometrically uniruled. We also show a singular version of our theorem, which is sharp in multiple aspects. Our work, together with La ...
2021
,
We use the theory of foliations to study the relative canonical divisor of a normalized inseparable base-change. Our main technical theorem states that it is linearly equivalent to a divisor with positive integer coefficients divisible by p - 1. We deduce ...
The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently in ...