A swimming pool reactor, also called an open pool reactor, is a type of nuclear reactor that has a core (consisting of the fuel elements and the control rods) immersed in an open pool usually of water.
The water acts as neutron moderator, cooling agent and radiation shield. The layer of water directly above the reactor core shields the radiation so completely that operators may work above the reactor safely. This design has two major advantages: the reactor is easily accessible and the whole primary cooling system, i.e. the pool water, is under normal pressure. This avoids the high temperatures and great pressures of nuclear power plants. Pool reactors are used as a source of neutrons and for training, and in rare instances for processing heat but not for electrical generation.
Open pools range in height from 6m to 9m (20' to 30') and diameter from 1.8m to 3.6m (6' to 12'). Some pools, like the one at the Canadian MAPLE reactor, are rectangular instead of cylindrical and often contain as much as 416,000 litres (110,000 gallons) of water. Most pools are built above floor level but some are completely or partially below ground. Ordinary (light) water- and heavy water-only types exist as well as so-called "tank in pool" designs that use heavy water moderation in a small tank situated in a larger light water pool for cooling. Life preservers are sometimes located around the facility to rescue personnel that may fall into the pool, further adding to the appearance of a swimming pool-like environment.
Normally the reactor is charged with low enriched uranium (LEU) fuel consisting of less than 20% U-235 alloyed with a matrix such as aluminium or zirconium. Highly enriched uranium (HEU) was the fuel of choice since it had a longer lifetime, but these have been largely phased out of non-military reactors to avoid proliferation issues. However most often 19.75% enrichment is used, falling just under the 20% level that would make it highly enriched. Fuel elements may be plates or rods with 8.5% to 45% uranium.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course applies concepts from chemical kinetics and mass and energy balances to address chemical reaction engineering problems, with a focus on industrial applications. Students develop the abilit
Research reactors are nuclear fission-based nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritime propulsion. The neutrons produced by a research reactor are used for neutron scattering, non-destructive testing, analysis and testing of materials, production of radioisotopes, research and public outreach and education.
The CANDU (Canada Deuterium Uranium) is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide (heavy water) moderator and its use of (originally, natural) uranium fuel. CANDU reactors were first developed in the late 1950s and 1960s by a partnership between Atomic Energy of Canada Limited (AECL), the Hydro-Electric Power Commission of Ontario, Canadian General Electric, and other companies.
Covers the transport of neutrons, scalar neutron flux, neutron currents, and more, along with fuel cycles and types of nuclear reactors.
Explores chain reactions, criticality, reactor types, and fuel cycles in nuclear engineering.
Covers the basics of nuclear engineering, reactor technology, safety barriers, reactor types, and thermodynamics of pressurized water reactors.
Photocatalytic (PC) solar hydrogen production is a promising way to provide green hydrogen using only sunlight and abundant reactants such as water. PC approaches use catalytically active semiconductor particles suspended in liquid electrolytes. The partic ...
This paper describes steady-state reactor physics measurements and calculations that were performed for the Training Reactor of Budapest University of Technology and Economics (BME TR) with the purpose of benchmarking. Based on the available geometry speci ...
Nuclear reactors are inherently stochastic systems, in which neutronic and thermal-hydraulic parameters fluctuate continuously even during steady-state conditions. In addition, structural components vibrate due to the coolant hydraulic forces. This stochas ...