DISPLAYTITLE:F4 (mathematics)
In mathematics, F4 is the name of a Lie group and also its Lie algebra f4. It is one of the five exceptional simple Lie groups. F4 has rank 4 and dimension 52. The compact form is simply connected and its outer automorphism group is the trivial group. Its fundamental representation is 26-dimensional.
The compact real form of F4 is the isometry group of a 16-dimensional Riemannian manifold known as the octonionic projective plane OP2. This can be seen systematically using a construction known as the magic square, due to Hans Freudenthal and Jacques Tits.
There are 3 real forms: a compact one, a split one, and a third one. They are the isometry groups of the three real Albert algebras.
The F4 Lie algebra may be constructed by adding 16 generators transforming as a spinor to the 36-dimensional Lie algebra so(9), in analogy with the construction of E8.
In older books and papers, F4 is sometimes denoted by E4.
The Dynkin diagram for F4 is: .
Its Weyl/Coxeter group G = W(F4) is the symmetry group of the 24-cell: it is a solvable group of order 1152. It has minimal faithful degree μ(G) = 24, which is realized by the action on the 24-cell.
The F4 lattice is a four-dimensional body-centered cubic lattice (i.e. the union of two hypercubic lattices, each lying in the center of the other). They form a ring called the Hurwitz quaternion ring. The 24 Hurwitz quaternions of norm 1 form the vertices of a 24-cell centered at the origin.
The 48 root vectors of F4 can be found as the vertices of the 24-cell in two dual configurations, representing the vertices of a disphenoidal 288-cell if the edge lengths of the 24-cells are equal:
24-cell vertices:
24 roots by (±1, ±1, 0, 0), permuting coordinate positions
Dual 24-cell vertices:
8 roots by (±1, 0, 0, 0), permuting coordinate positions
16 roots by (±1/2, ±1/2, ±1/2, ±1/2).
One choice of simple roots for F4, , is given by the rows of the following matrix:
Just as O(n) is the group of automorphisms which keep the quadratic polynomials x2 + y2 + ...