DISPLAYTITLE:F4 (mathematics)
In mathematics, F4 is the name of a Lie group and also its Lie algebra f4. It is one of the five exceptional simple Lie groups. F4 has rank 4 and dimension 52. The compact form is simply connected and its outer automorphism group is the trivial group. Its fundamental representation is 26-dimensional.
The compact real form of F4 is the isometry group of a 16-dimensional Riemannian manifold known as the octonionic projective plane OP2. This can be seen systematically using a construction known as the magic square, due to Hans Freudenthal and Jacques Tits.
There are 3 real forms: a compact one, a split one, and a third one. They are the isometry groups of the three real Albert algebras.
The F4 Lie algebra may be constructed by adding 16 generators transforming as a spinor to the 36-dimensional Lie algebra so(9), in analogy with the construction of E8.
In older books and papers, F4 is sometimes denoted by E4.
The Dynkin diagram for F4 is: .
Its Weyl/Coxeter group G = W(F4) is the symmetry group of the 24-cell: it is a solvable group of order 1152. It has minimal faithful degree μ(G) = 24, which is realized by the action on the 24-cell.
The F4 lattice is a four-dimensional body-centered cubic lattice (i.e. the union of two hypercubic lattices, each lying in the center of the other). They form a ring called the Hurwitz quaternion ring. The 24 Hurwitz quaternions of norm 1 form the vertices of a 24-cell centered at the origin.
The 48 root vectors of F4 can be found as the vertices of the 24-cell in two dual configurations, representing the vertices of a disphenoidal 288-cell if the edge lengths of the 24-cells are equal:
24-cell vertices:
24 roots by (±1, ±1, 0, 0), permuting coordinate positions
Dual 24-cell vertices:
8 roots by (±1, 0, 0, 0), permuting coordinate positions
16 roots by (±1/2, ±1/2, ±1/2, ±1/2).
One choice of simple roots for F4, , is given by the rows of the following matrix:
Just as O(n) is the group of automorphisms which keep the quadratic polynomials x2 + y2 + ...
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
We will establish the major results in the representation theory of semisimple Lie algebras over the field of complex numbers, and that of the related algebraic groups.
En mathématiques, E6 est le nom d'un groupe de Lie ; son algèbre de Lie est notée . Il s'agit de l'un des cinq groupes de Lie complexes de type exceptionnel. E6 est de rang 6 et de dimension 78. Le groupe fondamental de sa forme compacte est le groupe cyclique Z3 et son groupe d'automorphismes est le groupe cyclique Z2. Sa représentation fondamentale est de dimension complexe 27. Sa représentation duale est également de dimension 27. Une certaine forme non compacte réelle de E6 est le groupe des collinéations du plan projectif octonionique OP2, ou plan de Cayley.
Un groupe de Coxeter est un groupe engendré par des réflexions sur un espace. Les groupes de Coxeter se retrouvent dans de nombreux domaines des mathématiques et de la géométrie. En particulier, les groupes diédraux, ou les groupes d'isométries de polyèdres réguliers, sont des groupes de Coxeter. Les groupes de Weyl sont d'autres exemples de groupes de Coxeter. Ces groupes sont nommés d'après le mathématicien H.S.M. Coxeter. Un groupe de Coxeter est un groupe W ayant une présentation du type: où est à valeurs dans , est symétrique () et vérifie , si .
vignette|Le polytope de Gosset : les 240 vecteurs du système de racines En mathématiques, est le plus grand groupe de Lie complexe de type exceptionnel. Son algèbre de Lie est notée . E est de rang 8 et de dimension 248. Il est simplement connexe et son centre est trivial. La structure E a été découverte en 1887 par le mathématicien norvégien Sophus Lie pour étudier la symétrie et jusqu’ici personne ne pensait que cet objet mathématique pourrait être compris, considère , responsable de l’équipe qui réunit 18 mathématiciens et programmeurs dans le monde, dont Fokko du Cloux et .
Explore le théorème de classification des groupes de Coxeter et l'ordre de F_4.
Explore la preuve de la formule de caractère de Weyl pour les représentations tridimensionnelles des algèbres semi-simples de Lie.
Couvre le processus de normalisation des courbes algébriques planes, en se concentrant sur les polynômes irréductibles et les courbes affines.
Bi-Jacobi fields are generalized Jacobi fields, and are used to efficiently compute approximations to Riemannian cubic splines in a Riemannian manifold M. Calculating bi-Jacobi fields is straightforward when M is a symmetric space such as bi-invariant SO(3 ...
Most two-dimensional massless field theories carry represe ntations of the Virasoro algebra as consequences of their conformal symmetry. Recently, conformal symmetry has been rigorously established for scaling limit s of lattice models by means of discrete ...
2015
, , , ,
In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi ...