Concept

F4 (mathématiques)

Résumé
DISPLAYTITLE:F4 (mathematics) In mathematics, F4 is the name of a Lie group and also its Lie algebra f4. It is one of the five exceptional simple Lie groups. F4 has rank 4 and dimension 52. The compact form is simply connected and its outer automorphism group is the trivial group. Its fundamental representation is 26-dimensional. The compact real form of F4 is the isometry group of a 16-dimensional Riemannian manifold known as the octonionic projective plane OP2. This can be seen systematically using a construction known as the magic square, due to Hans Freudenthal and Jacques Tits. There are 3 real forms: a compact one, a split one, and a third one. They are the isometry groups of the three real Albert algebras. The F4 Lie algebra may be constructed by adding 16 generators transforming as a spinor to the 36-dimensional Lie algebra so(9), in analogy with the construction of E8. In older books and papers, F4 is sometimes denoted by E4. The Dynkin diagram for F4 is: . Its Weyl/Coxeter group G = W(F4) is the symmetry group of the 24-cell: it is a solvable group of order 1152. It has minimal faithful degree μ(G) = 24, which is realized by the action on the 24-cell. The F4 lattice is a four-dimensional body-centered cubic lattice (i.e. the union of two hypercubic lattices, each lying in the center of the other). They form a ring called the Hurwitz quaternion ring. The 24 Hurwitz quaternions of norm 1 form the vertices of a 24-cell centered at the origin. The 48 root vectors of F4 can be found as the vertices of the 24-cell in two dual configurations, representing the vertices of a disphenoidal 288-cell if the edge lengths of the 24-cells are equal: 24-cell vertices: 24 roots by (±1, ±1, 0, 0), permuting coordinate positions Dual 24-cell vertices: 8 roots by (±1, 0, 0, 0), permuting coordinate positions 16 roots by (±1/2, ±1/2, ±1/2, ±1/2). One choice of simple roots for F4, , is given by the rows of the following matrix: Just as O(n) is the group of automorphisms which keep the quadratic polynomials x2 + y2 + ...
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.