Linear continuumIn the mathematical field of order theory, a continuum or linear continuum is a generalization of the real line. Formally, a linear continuum is a linearly ordered set S of more than one element that is densely ordered, i.e., between any two distinct elements there is another (and hence infinitely many others), and complete, i.e., which "lacks gaps" in the sense that every nonempty subset with an upper bound has a least upper bound.
Least-upper-bound propertyIn mathematics, the least-upper-bound property (sometimes called completeness or supremum property or l.u.b. property) is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X. Not every (partially) ordered set has the least upper bound property. For example, the set of all rational numbers with its natural order does not have the least upper bound property.
Intermediate value theoremIn mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval , then it takes on any given value between and at some point within the interval. This has two important corollaries: If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (Bolzano's theorem). The of a continuous function over an interval is itself an interval.
0.999...In mathematics, 0.999... (also written as 0. or 0.) denotes the repeating decimal consisting of an unending sequence of 9s after the decimal point. This repeating decimal represents the smallest number no less than every decimal number in the sequence (0.9, 0.99, 0.999, ...); that is, the supremum of this sequence. This number is equal to1. In other words, "0.999..." is not "almost exactly" or "very, very nearly but not quite" 1 - rather, "0.999..." and "1" represent the same number.
Constructive analysisIn mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics. The name of the subject contrasts with classical analysis, which in this context means analysis done according to the more common principles of classical mathematics. However, there are various schools of thought and many different formalizations of constructive analysis.
Archimedean propertyIn abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typically construed, states that given two positive numbers and , there is an integer such that . It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no infinitely large or infinitely small elements.
Infimum and supremumIn mathematics, the infimum (abbreviated inf; plural infima) of a subset of a partially ordered set is the greatest element in that is less than or equal to each element of if such an element exists. In other words, it is the greatest element of that is lower or equal to the lowest element of . Consequently, the term greatest lower bound (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset of a partially ordered set is the least element in that is greater than or equal to each element of if such an element exists.
Construction of the real numbersIn mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a mathematical structure that satisfies the definition. The article presents several such constructions. They are equivalent in the sense that, given the result of any two such constructions, there is a unique isomorphism of ordered field between them.
NumberA number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number.
Real numberIn mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.