NAND gateIn digital electronics, a NAND gate (NOT-AND) is a logic gate which produces an output which is false only if all its inputs are true; thus its output is complement to that of an AND gate. A LOW (0) output results only if all the inputs to the gate are HIGH (1); if any input is LOW (0), a HIGH (1) output results. A NAND gate is made using transistors and junction diodes. By De Morgan's laws, a two-input NAND gate's logic may be expressed as =+, making a NAND gate equivalent to inverters followed by an OR gate.
Truth functionIn logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly one truth value; and inputting the same truth value(s) will always output the same truth value.
Logical disjunctionIn logic, disjunction, also known as logical disjunction or logical or or logical addition or inclusive disjunction , is a logical connective typically notated as and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula , assuming that abbreviates "it is sunny" and abbreviates "it is warm". In classical logic, disjunction is given a truth functional semantics according to which a formula is true unless both and are false.
Digital electronicsDigital electronics is a field of electronics involving the study of digital signals and the engineering of devices that use or produce them. This is in contrast to analog electronics and analog signals. Digital electronic circuits are usually made from large assemblies of logic gates, often packaged in integrated circuits. Complex devices may have simple electronic representations of Boolean logic functions. The binary number system was refined by Gottfried Wilhelm Leibniz (published in 1705) and he also established that by using the binary system, the principles of arithmetic and logic could be joined.
Well-formed formulaIn mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. A formal language can be identified with the set of formulas in the language. A formula is a syntactic object that can be given a semantic meaning by means of an interpretation. Two key uses of formulas are in propositional logic and predicate logic.
Propositional calculusPropositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.
Existential graphAn existential graph is a type of diagrammatic or visual notation for logical expressions, proposed by Charles Sanders Peirce, who wrote on graphical logic as early as 1882, and continued to develop the method until his death in 1914. Peirce proposed three systems of existential graphs: alpha, isomorphic to sentential logic and the two-element Boolean algebra; beta, isomorphic to first-order logic with identity, with all formulas closed; gamma, (nearly) isomorphic to normal modal logic. Alpha nests in beta and gamma.
Laws of FormLaws of Form (hereinafter LoF) is a book by G. Spencer-Brown, published in 1969, that straddles the boundary between mathematics and philosophy. LoF describes three distinct logical systems: The "primary arithmetic" (described in Chapter 4 of LoF), whose models include Boolean arithmetic; The "primary algebra" (Chapter 6 of LoF), whose models include the two-element Boolean algebra (hereinafter abbreviated 2), Boolean logic, and the classical propositional calculus; "Equations of the second degree" (Chapter 11), whose interpretations include finite automata and Alonzo Church's Restricted Recursive Arithmetic (RRA).