Spica is the brightest object in the constellation of Virgo and one of the 20 brightest stars in the night sky. It has the Bayer designation α Virginis, which is Latinised to Alpha Virginis and abbreviated Alpha Vir or α Vir. Analysis of its parallax shows that it is located 250 light-years from the Sun. It is a spectroscopic binary star and rotating ellipsoidal variable; a system whose two stars are so close together they are egg-shaped rather than spherical, and can only be separated by their spectra. The primary is a blue giant and a variable star of the Beta Cephei type. Spica, along with Arcturus and Denebola—or Regulus, depending on the source—forms the Spring Triangle asterism, and, by extension, is also part of the Great Diamond together with the star Cor Caroli. In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN) to catalog and standardize proper names for stars. The WGSN's first bulletin of July 2016 included a table of the first two batches of names approved by the WGSN; which included Spica for this star. It is now so entered in the IAU Catalog of Star Names. The name is derived from the Latin spīca virginis "the virgin's ear of [wheat] grain". It was also anglicized as Virgin's Spike. α Virginis (Latinised to Alpha Virginis) is the system's Bayer designation. Johann Bayer cited the name Arista. Other traditional names are Azimech 'æzImEk, from Arabic السماك الأعزل al-simāk al-ʼaʽzal 'the unarmed simāk (of unknown meaning, cf. Eta Boötis); Alarph, Arabic for 'the grape-gatherer' or 'gleaner', and Sumbalet (Sombalet, Sembalet and variants), from Arabic سنبلة sunbulah "ear of grain". In Chinese, 角宿 (Jiǎo Xiù), meaning Horn (asterism), refers to an asterism consisting of Spica and ζ Virginis. Consequently, the Chinese name for Spica is 角宿一 (Jiǎo Sù yī, the First Star of Horn). In Hindu astronomy, Spica corresponds to the Nakshatra Chitrā. As one of the nearest massive binary star systems to the Sun, Spica has been the subject of many observational studies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Related publications (3)
Related concepts (11)
Asterism (astronomy)
An asterism is an observed pattern or group of stars in the sky. Asterisms can be any identified pattern or group of stars, and therefore are a more general concept than the 88 formally defined constellations. Constellations are based on asterisms, but unlike asterisms, constellations outline and today completely divide the sky and all its celestial objects into regions around their central asterisms. For example, the asterism known as the Big Dipper comprises the seven brightest stars in the constellation Ursa Major.
Zodiac
The zodiac is a belt-shaped region of the sky that extends approximately 8° north and south (as measured in celestial latitude) of the ecliptic, which is the apparent path of the Sun across the celestial sphere over the course of the year. The orbital paths of the Moon and major planets are within the belt of the zodiac. In Western astrology, and formerly astronomy, the zodiac is divided into the following twelve signs: Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius, and Pisces.
Axial precession
In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In particular, axial precession can refer to the gradual shift in the orientation of Earth's axis of rotation in a cycle of approximately 26,000 years. This is similar to the precession of a spinning top, with the axis tracing out a pair of cones joined at their apices.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.