The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transformed the views of society about nature. The Scientific Revolution took place in Europe in the second half of the Renaissance period, with the 1543 Nicolaus Copernicus publication De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) often cited as its beginning.
The era of the Scientific Renaissance focused to some degree on recovering the knowledge of the ancients and is considered to have culminated in Isaac Newton's 1687 publication Principia which formulated the laws of motion and universal gravitation, thereby completing the synthesis of a new cosmology. The subsequent Age of Enlightenment saw the concept of a scientific revolution emerge in the 18th-century work of Jean Sylvain Bailly, who described a two-stage process of sweeping away the old and establishing the new. There continues to be scholarly engagement regarding the boundaries of the Scientific Revolution and its chronology.
Great advances in science have been termed "revolutions" since the 18th century. For example, in 1747, the French mathematician Alexis Clairaut wrote that "Newton was said in his own life to have created a revolution". The word was also used in the preface to Antoine Lavoisier's 1789 work announcing the discovery of oxygen. "Few revolutions in science have immediately excited so much general notice as the introduction of the theory of oxygen ... Lavoisier saw his theory accepted by all the most eminent men of his time, and established over a great part of Europe within a few years from its first promulgation."
In the 19th century, William Whewell described the revolution in science itself – the scientific method – that had taken place in the 15th–16th century.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Cet enseignement a pour but de revenir sur les conflits entre sciences et religions. Des conflits inévitables quand la science décide d'aborder des thèmes qui recouvrent ceux discutés dans les textes
Le but de cet enseignement est de revenir sur les conditions (historiques mais aussi épistémologiques) qui ont permis aux sciences de prendre de l'autonomie par rapport à la religion.
Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term cosmology was first used in English in 1656 in Thomas Blount's Glossographia, and in 1731 taken up in Latin by German philosopher Christian Wolff, in Cosmologia Generalis. Religious or mythological cosmology is a body of beliefs based on mythological, religious, and esoteric literature and traditions of creation myths and eschatology. In the science of astronomy, cosmology is concerned with the study of the chronology of the universe.
Pythagoreanism originated in the 6th century BC, based on and around the teachings and beliefs held by Pythagoras and his followers, the Pythagoreans. Pythagoras established the first Pythagorean community in the ancient Greek colony of Kroton, in modern Calabria (Italy). Early Pythagorean communities spread throughout Magna Graecia. Pythagoras' death and disputes about his teachings led to the development of two philosophical traditions within Pythagoreanism.
The Age of Enlightenment or the Enlightenment, also known as the Age of Reason, was an intellectual and philosophical movement that occurred in Europe, especially Western Europe, in the 17th and 18th centuries, with global influences and effects. The Enlightenment included a range of ideas centered on the value of human happiness, the pursuit of knowledge obtained by means of reason and the evidence of the senses, and ideals such as natural law, liberty, progress, toleration, fraternity, constitutional government, and separation of church and state.
Explores historical cases of monstrous births, fabrication of hybrids, plant breeding advancements, and the influence of science on commerce and industry.
The archive of science is a place where scientific practices are sedimented in the form of drafts, protocols of rejected hypotheses and failed experiments, obsolete instruments, outdated visualizations and other residues. Today, just as science goes more a ...
In contrast to vast academic efforts to study AI security, few real-world reports of AI security incidents exist. Released incidents prevent a thorough investigation of the attackers' motives, as crucial information about the company and AI application is ...
The volume collects the material produced for the exhibition 'The Sky in the Room' and a selection of scientific texts on the question of analogue continuity in digital transition. The contributions will be focused on verifying the operative method in teac ...