CongruumIn number theory, a congruum (plural congrua) is the difference between successive square numbers in an arithmetic progression of three squares. That is, if , , and (for integers , , and ) are three square numbers that are equally spaced apart from each other, then the spacing between them, , is called a congruum. The congruum problem is the problem of finding squares in arithmetic progression and their associated congrua. It can be formalized as a Diophantine equation: find integers , , and such that When this equation is satisfied, both sides of the equation equal the congruum.
Fermat's Last TheoremIn number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of Arithmetica. Fermat added that he had a proof that was too large to fit in the margin.
Beal conjectureThe Beal conjecture is the following conjecture in number theory: If where A, B, C, x, y, and z are positive integers with x, y, z ≥ 3, then A, B, and C have a common prime factor. Equivalently, The equation has no solutions in positive integers and pairwise coprime integers A, B, C if x, y, z ≥ 3. The conjecture was formulated in 1993 by Andrew Beal, a banker and amateur mathematician, while investigating generalizations of Fermat's Last Theorem. Since 1997, Beal has offered a monetary prize for a peer-reviewed proof of this conjecture or a counterexample.
Pythagorean tripleA Pythagorean triple consists of three positive integers a, b, and c, such that a^2 + b^2 = c^2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.
Proof by infinite descentIn mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions.
Diophantine equationIn mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations.