The gas-cooled fast reactor (GFR) system is a nuclear reactor design which is currently in development. Classed as a Generation IV reactor, it features a fast-neutron spectrum and closed fuel cycle for efficient conversion of fertile uranium and management of actinides. The reference reactor design is a helium-cooled system operating with an outlet temperature of 850 °C using a direct Brayton closed-cycle gas turbine for high thermal efficiency. Several fuel forms are being considered for their potential to operate at very high temperatures and to ensure an excellent retention of fission products: composite ceramic fuel, advanced fuel particles, or ceramic clad elements of actinide compounds. Core configurations are being considered based on pin- or plate-based fuel assemblies or prismatic blocks, which allows for better coolant circulation than traditional fuel assemblies.
The reactors are intended for use in nuclear power plants to produce electricity, while at the same time producing (breeding) new nuclear fuel.
Fast reactors were originally designed to be primarily breeder reactors. This was because of a view at the time of their conception that there was an imminent shortage of uranium fuel for existing reactors. The projected increase in uranium price did not materialize, but if uranium demand increases in the future, then there may be renewed interest in fast reactors.
The GFR base design is a fast reactor, but in other ways similar to a high temperature gas-cooled reactor. It differs from the HTGR design in that the core has a higher fissile fuel content as well as a non-fissile, fertile, breeding component. There is no neutron moderator, as the chain reaction is sustained by fast neutrons. Due to the higher fissile fuel content, the design has a higher power density than the HTGR.
In a GFR reactor design, the unit operates on fast neutrons; no moderator is needed to slow neutrons down. This means that, apart from nuclear fuel such as uranium, other fuels can be used.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
Generation IV reactors (Gen IV) are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) - an international organization that coordinates the development of generation IV reactors - specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost.
The integral fast reactor (IFR, originally advanced liquid-metal reactor) is a design for a nuclear reactor using fast neutrons and no neutron moderator (a "fast" reactor). IFR would breed more fuel and is distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site. The U.S. Department of Energy began designing an IFR in 1984 and built a prototype, the Experimental Breeder Reactor II. On April 3, 1986, two tests demonstrated the safety of the IFR concept.
The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel.
Introduces Generation IV nuclear reactors, focusing on fast-spectrum reactors and their sustainability, breeding of fissile fuel, properties of coolants, historical development, advantages, disadvantages, and key challenges.
Photocatalytic (PC) solar hydrogen production is a promising way to provide green hydrogen using only sunlight and abundant reactants such as water. PC approaches use catalytically active semiconductor particles suspended in liquid electrolytes. The partic ...
Nuclear fusion reactor plasmas will need to exhaust a significant proportion of energy flux through radiative processes, to enable acceptable divertor loads. This can be obtained by line radiation from impurities, injected from the plasma edge. There are h ...
Hydrogen (H-2) has been widely considered the clean energy carrier of choice for emerging renewable energy generation technologies. However, H-2 is a secondary fuel mainly derived from natural gas. Over the past decades, research on developing H-2 producti ...