The integral fast reactor (IFR, originally advanced liquid-metal reactor) is a design for a nuclear reactor using fast neutrons and no neutron moderator (a "fast" reactor). IFR would breed more fuel and is distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.
The U.S. Department of Energy began designing an IFR in 1984 and built a prototype, the Experimental Breeder Reactor II. On April 3, 1986, two tests demonstrated the safety of the IFR concept. These tests simulated accidents involving loss of coolant flow. Even with its normal shutdown devices disabled, the reactor shut itself down safely without overheating anywhere in the system. The IFR project was canceled by the US Congress in 1994, three years before completion.
The proposed Generation IV Sodium-Cooled Fast Reactor is its closest surviving fast breeder reactor design. Other countries have also designed and operated fast reactors.
S-PRISM (from SuperPRISM), also called PRISM (Power Reactor Innovative Small Module), is the name of a nuclear power plant design by GE Hitachi Nuclear Energy (GEH) based on the IFR.
In 2022, GE Hitachi Nuclear Energy and TerraPower began exploring locating 5 Natrium sodium fast reactors based nuclear power plant design incorporating a PRISM reactor based on the IFR plus Terrapower's Traveling Wave design with a molten salt storage system in Kemmerer, Wyoming.
Research on IFR reactors began in 1984 at Argonne National Laboratory in Argonne, Illinois. as a part of the U.S. Department of Energy's national laboratory system, and currently operated on a contract by the University of Chicago.
Argonne previously had a branch campus named "Argonne West" in Idaho Falls, Idaho that is now part of the Idaho National Laboratory. In the past, at the branch campus, physicists from Argonne West built what was known as the Experimental Breeder Reactor II (EBR-II). In the meantime, physicists at Argonne designed the IFR concept, and it was decided that the EBR-II would be converted to an IFR.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
The main focus of the lecture is on reactive hazards (thermal process safety) + introduction to explosion protection. While being based on theory, the lecture is oriented towards industrial practice.
A molten salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissionable material. Two research MSRs operated in the United States in the mid-20th century. The 1950s Aircraft Reactor Experiment (ARE) was primarily motivated by the technology's compact size, while the 1960s Molten-Salt Reactor Experiment (MSRE) aimed to demonstrate a nuclear power plant using a thorium fuel cycle in a breeder reactor.
Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes derive by neutron capture is found along with the U-235 in the low enriched uranium fuel of civilian reactors.
Generation IV reactors (Gen IV) are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) - an international organization that coordinates the development of generation IV reactors - specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost.
Introduces Generation IV nuclear reactors, focusing on fast-spectrum reactors and their sustainability, breeding of fissile fuel, properties of coolants, historical development, advantages, disadvantages, and key challenges.
Noise measurements in light water reactor systems aid in generating validation data for integral point kinetic parameter predictions and generating monitoring parameters for reactor safety and safeguards. The CROCUS zero-power reactor has been used to supp ...
The sequence of codes Serpent/DYN3D has been developed by the Helmholtz-Zentrum Dresden-Rossendorf and successfully applied to core static and transient analyses of sodium-cooled fast reactors (SFRs). The successful application of the sequence to SFRs was ...
EPFL2023
,
Nuclear fusion reactor plasmas will need to exhaust a significant proportion of energy flux through radiative processes, to enable acceptable divertor loads. This can be obtained by line radiation from impurities, injected from the plasma edge. There are h ...