The generalized entropy index has been proposed as a measure of income inequality in a population. It is derived from information theory as a measure of redundancy in data. In information theory a measure of redundancy can be interpreted as non-randomness or data compression; thus this interpretation also applies to this index. In addition, interpretation of biodiversity as entropy has also been proposed leading to uses of generalized entropy to quantify biodiversity. The formula for general entropy for real values of is: where N is the number of cases (e.g., households or families), is the income for case i and is a parameter which regulates the weight given to distances between incomes at different parts of the income distribution. For large the index is especially sensitive to the existence of large incomes, whereas for small the index is especially sensitive to the existence of small incomes. An Atkinson index for any inequality aversion parameter can be derived from a generalized entropy index under the restriction that - i.e. an Atkinson index with high inequality aversion is derived from a GE index with small . Moreover, it is the unique class of inequality measures that is a monotone transformation of the Atkinson index and which is additive decomposable. Many popular indices, including Gini index, do not satisfy additive decomposability. The formula for deriving an Atkinson index with inequality aversion parameter under the restriction is given by: Note that the generalized entropy index has several income inequality metrics as special cases. For example, GE(0) is the mean log deviation, GE(1) is the Theil index, and GE(2) is half the squared coefficient of variation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.