The generalized entropy index has been proposed as a measure of income inequality in a population. It is derived from information theory as a measure of redundancy in data. In information theory a measure of redundancy can be interpreted as non-randomness or data compression; thus this interpretation also applies to this index. In addition, interpretation of biodiversity as entropy has also been proposed leading to uses of generalized entropy to quantify biodiversity. The formula for general entropy for real values of is: where N is the number of cases (e.g., households or families), is the income for case i and is a parameter which regulates the weight given to distances between incomes at different parts of the income distribution. For large the index is especially sensitive to the existence of large incomes, whereas for small the index is especially sensitive to the existence of small incomes. An Atkinson index for any inequality aversion parameter can be derived from a generalized entropy index under the restriction that - i.e. an Atkinson index with high inequality aversion is derived from a GE index with small . Moreover, it is the unique class of inequality measures that is a monotone transformation of the Atkinson index and which is additive decomposable. Many popular indices, including Gini index, do not satisfy additive decomposability. The formula for deriving an Atkinson index with inequality aversion parameter under the restriction is given by: Note that the generalized entropy index has several income inequality metrics as special cases. For example, GE(0) is the mean log deviation, GE(1) is the Theil index, and GE(2) is half the squared coefficient of variation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (2)
Income inequality metrics
Income inequality metrics or income distribution metrics are used by social scientists to measure the distribution of income and economic inequality among the participants in a particular economy, such as that of a specific country or of the world in general. While different theories may try to explain how income inequality comes about, income inequality metrics simply provide a system of measurement used to determine the dispersion of incomes. The concept of inequality is distinct from poverty and fairness.
Coefficient de Gini
Le coefficient de Gini, ou indice de Gini, est une mesure statistique permettant de rendre compte de la répartition d'une variable (salaire, revenus, patrimoine) au sein d'une population. Autrement dit, il mesure le niveau d'inégalité de la répartition d'une variable dans la population. Ce coefficient est typiquement utilisé pour mesurer l'inégalité des revenus dans un pays. Il a été développé par le statisticien italien Corrado Gini.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.