A scale model is a physical model which is geometrically similar to an object (known as the prototype). Scale models are generally smaller than large prototypes such as vehicles, buildings, or people; but may be larger than small prototypes such as anatomical structures or subatomic particles. Models built to the same scale as the prototype are called mockups. Scale models are used as tools in engineering design and testing, promotion and sales, filmmaking special effects, military strategy, and hobbies such as rail transport modeling, wargaming and racing; and as toys. Model building is also pursued as a hobby for the sake of artisanship. Scale models are constructed of plastic, wood, or metal. They are usually painted with enamel, lacquer, or acrylics. Model prototypes include all types of vehicles (railroad trains, cars, trucks, military vehicles, aircraft, and spacecraft), buildings, people, and science fiction themes (spaceships and robots). Model building Models are built to scale, defined as the ratio of any linear dimension of the model to the equivalent dimension on the full-size subject (called the "prototype"), expressed either as a ratio with a colon (ex. 1:8 scale), or as a fraction with a slash (1/8 scale). This designates that 1 inch (or centimeter) on the model represents 8 such units on the prototype. In English-speaking countries, the scale is sometimes expressed as the number of feet on the prototype corresponding to one inch on the model, e.g. 1:48 scale = "1 inch to 4 feet", 1:96 = "1 inch to 8 feet", etc. Models are obtained by three different means: kit assembly, scratch building, and collecting pre-assembled models. Scratch building is the only option available to structural engineers, and among hobbyists requires the highest level of skill, craftsmanship, and time; scratch builders tend to be the most concerned with accuracy and detail. Kit assembly is done either "out of the box", or with modifications (known as "kitbashing").

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (26)
ME-373: Finite element modelling and simulation
L'objectif de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.
ME-467: Turbulence
This course provides an introduction to the physical phenomenon of turbulence, its probabilistic description and modeling approaches including RANS and LES. Students are equipped with the basic knowle
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Show more
Related MOOCs (2)
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.