Optical tweezers (originally called single-beam gradient force trap) are scientific instruments that use a highly focused laser beam to hold and move microscopic and sub-microscopic objects like atoms, nanoparticles and droplets, in a manner similar to tweezers. If the object is held in air or vacuum without additional support, it can be called optical levitation.
The laser light provides an attractive or repulsive force (typically on the order of piconewtons), depending on the relative refractive index between particle and surrounding medium. Levitation is possible if the force of the light counters the force of gravity. The trapped particles are usually micron-sized, or even smaller. Dielectric and absorbing particles can be trapped, too.
Optical tweezers are used in biology and medicine (for example to grab and hold a single bacterium, a cell like a sperm cell or a blood cell, or a molecule like DNA), nanoengineering and nanochemistry (to study and build materials from single molecules), quantum optics and quantum optomechanics (to study the interaction of single particles with light). The development of optical tweezing by Arthur Ashkin was lauded with the 2018 Nobel Prize in Physics.
The detection of optical scattering and the gradient forces on micron sized particles was first reported in 1970 by Arthur Ashkin, a scientist working at Bell Labs. Years later, Ashkin and colleagues reported the first observation of what is now commonly referred to as an optical tweezer: a tightly focused beam of light capable of holding microscopic particles stable in three dimensions. In 2018, Ashkin was awarded the Nobel Prize in Physics for this development.
One author of this seminal 1986 paper, Steven Chu, would go on to use optical tweezing in his work on cooling and trapping neutral atoms. This research earned Chu the 1997 Nobel Prize in Physics along with Claude Cohen-Tannoudji and William D. Phillips. In an interview, Steven Chu described how Ashkin had first envisioned optical tweezing as a method for trapping atoms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Advanced Bioengineering Methods Laboratories (ABML) offers laboratory practice and data analysis. These active sessions present a variety of techniques employed in the bioengineering field and matchin
This module serves as an introduction to the area of biophotonics. The approach is multidisciplinary .The course is mainly knowledge-based but students will benefit from the skills learned by carrying
In this class we will review the fundamental origin of the optical properties exhibited by different classes of materials. We will then give examples of the most up-to-date research on optical materia
Magnetic tweezers (MT) are scientific instruments for the manipulation and characterization of biomolecules or polymers. These apparatus exert forces and torques to individual molecules or groups of molecules. It can be used to measure the tensile strength or the force generated by molecules. Most commonly magnetic tweezers are used to study mechanical properties of biological macromolecules like DNA or proteins in single-molecule experiments. Other applications are the rheology of soft matter, and studies of force-regulated processes in living cells.
Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have been used to test many of the counter-intuitive predictions of quantum mechanics, such as entanglement and teleportation, and are a useful resource for quantum information processing. Light propagating in a restricted volume of space has its energy and momentum quantized according to an integer number of particles known as photons.
Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) absorbs and re-emits a photon (a particle of light) its momentum changes. For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity. That is, more homogeneous velocities among particles corresponds to a lower temperature.
Explores microfluidic cell trapping, array technologies, and immunocapture methods for single cells, highlighting the importance of studying individual cell behavior.
This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...
Acoustic levitation devices use powerful ultrasonic standing waves to levitate objects in mid-air. We have created a system and method to measure the full harmonic content of the acoustic field accurately. Our study revealed that levitated particles alter ...
We report the formation of arbitrary photoconductive patterns made of tellurium (Te) nanocrystals by exposing a tellurite (TeO2-based) glass to femtosecond laser pulses. During this process, Te/TeO2-glass nanocomposite interfaces with photoconductive prope ...