Concept

Discriminant of an algebraic number field

Related concepts (19)
Algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
Field trace
In mathematics, the field trace is a particular function defined with respect to a finite field extension L/K, which is a K-linear map from L onto K. Let K be a field and L a finite extension (and hence an algebraic extension) of K. L can be viewed as a vector space over K. Multiplication by α, an element of L, is a K-linear transformation of this vector space into itself. The trace, TrL/K(α), is defined as the trace (in the linear algebra sense) of this linear transformation. For α in L, let σ_1(α), ...
Ideal norm
In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ideal in a less complicated ring. When the less complicated number ring is taken to be the ring of integers, Z, then the norm of a nonzero ideal I of a number ring R is simply the size of the finite quotient ring R/I.
Kronecker symbol
In number theory, the Kronecker symbol, written as or , is a generalization of the Jacobi symbol to all integers . It was introduced by . Let be a non-zero integer, with prime factorization where is a unit (i.e., ), and the are primes. Let be an integer. The Kronecker symbol is defined by For odd , the number is simply the usual Legendre symbol. This leaves the case when . We define by Since it extends the Jacobi symbol, the quantity is simply when .
Dedekind zeta function
In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K.
Hilbert class field
In algebraic number theory, the Hilbert class field E of a number field K is the maximal abelian unramified extension of K. Its degree over K equals the class number of K and the Galois group of E over K is canonically isomorphic to the ideal class group of K using Frobenius elements for prime ideals in K. In this context, the Hilbert class field of K is not just unramified at the finite places (the classical ideal theoretic interpretation) but also at the infinite places of K.
Class number problem
In mathematics, the Gauss class number problem (for imaginary quadratic fields), as usually understood, is to provide for each n ≥ 1 a complete list of imaginary quadratic fields (for negative integers d) having class number n. It is named after Carl Friedrich Gauss. It can also be stated in terms of discriminants. There are related questions for real quadratic fields and for the behavior as .
Quadratic field
In algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Splitting of prime ideals in Galois extensions
In mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of algebraic number theory. The splitting of prime ideals in Galois extensions is sometimes attributed to David Hilbert by calling it Hilbert theory. There is a geometric analogue, for ramified coverings of Riemann surfaces, which is simpler in that only one kind of subgroup of G need be considered, rather than two.
Class number formula
In number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function. We start with the following data: K is a number field. [K : Q] = n = r1 + 2r2, where r1 denotes the number of real embeddings of K, and 2r2 is the number of complex embeddings of K. ζK(s) is the Dedekind zeta function of K. hK is the class number, the number of elements in the ideal class group of K. RegK is the regulator of K. wK is the number of roots of unity contained in K.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.