Concept

Optofluidics

Summary
Optofluidics is a research and technology area that combines the advantages of fluidics (in particular microfluidics) and optics. Applications of the technology include displays, biosensors, lab-on-chip devices, lenses, and molecular imaging tools and energy. The idea of fluid-optical devices can be traced back at least as far as the 18th century, when spinning pools of mercury were proposed (and eventually developed) as liquid-mirror telescopes. In the 20th century new technologies such as dye lasers and liquid-core waveguides were developed that took advantage of the tunability and physical adaptability that liquids provided to these newly emerging photonic systems. The field of optofluidics formally began to emerge in the mid-2000s as the fields of microfluidics and nanophotonics were maturing and researchers began to look for synergies between these two areas. One of the primary applications of the field is for lab-on-a-chip and biophotonic products. Optofluidic and related research has led to the formation of a number of new products and start-up companies. Varioptic specializes in the development of electrowetting based lenses for numerous applications. Optofluidics, Inc. was launched in 2011 from Cornell University in order to develop tools for molecular trapping and disease diagnosis based on photonic resonator technology. Liquilume from UC Santa Cruz specializes in molecular diagnostics based on arrow waveguides. In 2012, the European Commission has launched a new COST framework that is concerned solely with optofluidic technology and their application. Given the broad range of technologies that have already been developed in the field of microfluidics and the many potential applications of integrating optical components into these systems, the range of applications for optofluidic technology is vast. Optofluidic waveguides are based on principles of traditional optical waveguides and microfluidic techniques used to maintain gradients or boundaries between flowing fluids. Yang et al.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.