The field of view (FOV) is the angular extent of the observable world that is seen at any given moment. In the case of optical instruments or sensors, it is a solid angle through which a detector is sensitive to electromagnetic radiation. It is further relevant in photography. In the context of human and primate vision, the term "field of view" is typically only used in the sense of a restriction to what is visible by external apparatus, like when wearing spectacles or virtual reality goggles. Note that eye movements are allowed in the definition but do not change the field of view when understood this way. If the analogy of the eye's retina working as a sensor is drawn upon, the corresponding concept in human (and much of animal vision) is the visual field. It is defined as "the number of degrees of visual angle during stable fixation of the eyes". Note that eye movements are excluded in the visual field's definition. Humans have a slightly over 210-degree forward-facing horizontal arc of their visual field (i.e. without eye movements), (with eye movements included it is slightly larger, as you can try for yourself by wiggling a finger on the side), while some birds have a complete or nearly complete 360-degree visual field. The vertical range of the visual field in humans is around 150 degrees. The range of visual abilities is not uniform across the visual field, and by implication the FoV, and varies between species. For example, binocular vision, which is the basis for stereopsis and is important for depth perception, covers 114 degrees (horizontally) of the visual field in humans; the remaining peripheral 40 degrees on each side have no binocular vision (because only one eye can see those parts of the visual field). Some birds have a scant 10 to 20 degrees of binocular vision. Similarly, color vision and the ability to perceive shape and motion vary across the visual field; in humans color vision and form perception are concentrated in the center of the visual field, while motion perception is only slightly reduced in the periphery and thus has a relative advantage there.
Jan Wienold, Caroline Karmann, Sneha Jain
Dominique Pioletti, Peyman Karami, Naser Nasrollahzadeh Mamaghani, Theofanis Stampoultzis, Yanheng Guo, Vijay Kumar Rana