Circumconic and inconicIn Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. Suppose A, B, C are distinct non-collinear points, and let △ABC denote the triangle whose vertices are A, B, C. Following common practice, A denotes not only the vertex but also the angle ∠BAC at vertex A, and similarly for B and C as angles in △ABC. Let the sidelengths of △ABC.
Ceva's theoremIn Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle △ABC, let the lines AO, BO, CO be drawn from the vertices to a common point O (not on one of the sides of △ABC), to meet opposite sides at D, E, F respectively. (The segments , , are known as cevians.) Then, using signed lengths of segments, In other words, the length is taken to be positive or negative according to whether X is to the left or right of Y in some fixed orientation of the line.
Pedal triangleIn geometry, a pedal triangle is obtained by projecting a point onto the sides of a triangle. More specifically, consider a triangle ABC, and a point P that is not one of the vertices A, B, C. Drop perpendiculars from P to the three sides of the triangle (these may need to be produced, i.e., extended). Label L, M, N the intersections of the lines from P with the sides BC, AC, AB. The pedal triangle is then LMN. If ABC is not an obtuse triangle, P is the orthocenter then the angles of LMN are 180°−2A, 180°−2B and 180°−2C.
Steiner ellipseIn geometry, the Steiner ellipse of a triangle, also called the Steiner circumellipse to distinguish it from the Steiner inellipse, is the unique circumellipse (ellipse that touches the triangle at its vertices) whose center is the triangle's centroid. Named after Jakob Steiner, it is an example of a circumconic. By comparison the circumcircle of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is equilateral.
Fermat pointIn Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible or, equivalently, the geometric median of the three vertices. It is so named because this problem was first raised by Fermat in a private letter to Evangelista Torricelli, who solved it. The Fermat point gives a solution to the geometric median and Steiner tree problems for three points.
Law of tangentsIn trigonometry, the law of tangents or tangent rule is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a, b, and c are the lengths of the three sides of the triangle, and α, β, and γ are the angles opposite those three respective sides. The law of tangents states that The law of tangents, although not as commonly known as the law of sines or the law of cosines, is equivalent to the law of sines, and can be used in any case where two sides and the included angle, or two angles and a side, are known.
Euler's theorem in geometryIn geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by or equivalently where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively). The theorem is named for Leonhard Euler, who published it in 1765. However, the same result was published earlier by William Chapple in 1746. From the theorem follows the Euler inequality: which holds with equality only in the equilateral case.
Pons asinorumIn geometry, the statement that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (ˈpõːs asɪˈnoːrũː, ˈpɒnz_ˌaesᵻˈnɔərəm ), typically translated as "bridge of asses". This statement is Proposition 5 of Book 1 in Euclid's Elements, and is also known as the isosceles triangle theorem. Its converse is also true: if two angles of a triangle are equal, then the sides opposite them are also equal. The term is also applied to the Pythagorean theorem.
Splitter (geometry)In Euclidean geometry, a splitter is a line segment through one of the vertices of a triangle (that is, a cevian) that bisects the perimeter of the triangle. They are not to be confused with cleavers, which also bisect the perimeter but instead emanate from the midpoint of one of the triangle's sides. The opposite endpoint of a splitter to the chosen triangle vertex lies at the point on the triangle's side where one of the excircles of the triangle is tangent to that side. This point is also called a splitting point of the triangle.
Orthocentroidal circleIn geometry, the orthocentroidal circle of a non-equilateral triangle is the circle that has the triangle's orthocenter and centroid at opposite ends of its diameter. This diameter also contains the triangle's nine-point center and is a subset of the Euler line, which also contains the circumcenter outside the orthocentroidal circle. Andrew Guinand showed in 1984 that the triangle's incenter must lie in the interior of the orthocentroidal circle, but not coinciding with the nine-point center; that is, it must fall in the open orthocentroidal disk punctured at the nine-point center.