Nucleophilic conjugate addition is a type of organic reaction. Ordinary nucleophilic additions or 1,2-nucleophilic additions deal mostly with additions to carbonyl compounds. Simple alkene compounds do not show 1,2 reactivity due to lack of polarity, unless the alkene is activated with special substituents. With α,β-unsaturated carbonyl compounds such as cyclohexenone it can be deduced from resonance structures that the β position is an electrophilic site which can react with a nucleophile. The negative charge in these structures is stored as an alkoxide anion. Such a nucleophilic addition is called a nucleophilic conjugate addition or 1,4-nucleophilic addition. The most important active alkenes are the aforementioned conjugated carbonyls and acrylonitriles. Conjugate addition is the vinylogous counterpart of direct nucleophilic addition. A nucleophile reacts with a α,β-unsaturated carbonyl compound in the β position. The negative charge carried by the nucleophile is now delocalized in the alkoxide anion and the α carbon carbanion by resonance. Protonation leads through keto-enol tautomerism to the saturated carbonyl compound. In vicinal difunctionalization the proton is replaced by another electrophile. Conjugated carbonyls react with secondary amines to form 3-aminocarbonyls (3-ketoamines). For example, the conjugate addition of methylamine to cyclohexen-2-one gives the compound 3-(N-methylamino)-cyclohexanone. Conjugated carbonyls react with hydrogen cyanide to 1,4-keto-nitriles. See hydrocyanation of unsaturated carbonyls. In the Nagata reaction the cyanide source is diethylaluminum cyanide. The Gilman reagent is an effective nucleophile for 1,4-additions to conjugated carbonyls. The Michael reaction involves conjugate additions of enolates to conjugated carbonyls. The Stork enamine reaction involves the conjugate addition of enamines to conjugated carbonyls. Conjugate addition is effective in the formation of new carbon-carbon bonds with the help of organometallic reagents such as the organozinc iodide reaction with methylvinylketone.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
CH-435: Asymmetric catalysis for fine chemicals synthesis
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
CH-233: Organic functions and reactions I
Le cours se focalisera sur les composés carbonyles: leur structures, réactivités, et leurs transformations; la réactivité des énols/énolates et leurs réactions fondamentales. L'importance de la compré
CH-120: Advanced general chemistry II
Acquisition des notions fondamentales liées à la réactivité des molécules organiques, identification de la structure de petites molécules organiques au moyen des techniques de spectrométrie de masse,
Show more
Related lectures (11)
Organometallic Reagents: Synthesis and Reactivity
Covers the synthesis and reactivity of organometallic reagents and enol chemistry, emphasizing enolate formation and factors influencing it.
Electrophilic Addition: Chemistry of Alkenes and Hydrogenation
Discusses electrophilic addition reactions and hydrogenation processes in alkenes, emphasizing mechanisms, conditions, and practical applications in organic synthesis.
Catalytic Asymmetric Reactions in Organic Chemistry
Summarizes metal-ligand dual activation and cyanide addition reactions in organic chemistry.
Show more
Related publications (32)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.