Concept

Joint encoding

Summary
In audio engineering, joint encoding refers to a joining of several channels of similar information during encoding in order to obtain higher quality, a smaller file size, or both. The term joint stereo has become prominent as the Internet has allowed for the transfer of relatively low bit rate, acceptable-quality audio with modest Internet access speeds. Joint stereo refers to any number of encoding techniques used for this purpose. Two forms are described here, both of which are implemented in various ways with different codecs, such as MP3, AAC and Ogg Vorbis. This form of joint stereo uses a technique known as joint frequency encoding, which functions on the principle of sound localization. Human hearing is predominantly less acute at perceiving the direction of certain audio frequencies. By exploiting this characteristic, intensity stereo coding can reduce the data rate of an audio stream with little or no perceived change in apparent quality. More specifically, the dominance of inter-aural time differences (ITD) for sound localization by humans is only present for lower frequencies. That leaves inter-aural amplitude differences (IAD) as the dominant location indicator for higher frequencies (the cutoff being ~2 KHz). The idea of intensity stereo coding is to merge the lower spectrum into just one channel (thus reducing overall differences between channels) and to transmit a little side information about how to pan certain frequency regions to recover the IAD cues. ITD is not lost completely in this scheme, however: the shape of the ear makes it such that the ITD can be recovered from IAD if the sound comes from free space, e.g. played through loudspeakers. This type of coding does not perfectly reconstruct the original audio because of the loss of information which results in the simplification of the stereo image and can produce perceptible compression artifacts. However, for very low bit rates this type of coding usually yields a gain in perceived quality of the audio.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.