In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or diameters of the unit circle.
The group of orientation preserving isometries of the disk model is given by the projective special unitary group PSU(1,1), the quotient of the special unitary group SU(1,1) by its center {I, −I}.
Along with the Klein model and the Poincaré half-space model, it was proposed by Eugenio Beltrami who used these models to show that hyperbolic geometry was equiconsistent with Euclidean geometry. It is named after Henri Poincaré, because his rediscovery of this representation fourteen years later became better known than the original work of Beltrami.
The Poincaré ball model is the similar model for 3 or n-dimensional hyperbolic geometry in which the points of the geometry are in the n-dimensional unit ball.
The disk model was first described by Bernhard Riemann in an 1854 lecture (published 1868), which inspired an 1868 paper by Eugenio Beltrami. Henri Poincaré employed it in his 1882 treatment of hyperbolic, parabolic and elliptic functions, but it became widely known following Poincaré's presentation in his 1905 philosophical treatise, Science and Hypothesis. There he describes a world, now known as the Poincaré disk, in which space was Euclidean, but which appeared to its inhabitants to satisfy the axioms of hyperbolic geometry:"Suppose, for example, a world enclosed in a large sphere and subject to the following laws: The temperature is not uniform; it is greatest at their centre, and gradually decreases as we move towards the circumference of the sphere, where it is absolute zero. The law of this temperature is as follows: If be the radius of the sphere, and the distance of the point considered from the centre, the absolute temperature will be proportional to .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In hyperbolic geometry, a horocycle (), sometimes called an oricycle, oricircle, or limit circle, is a curve whose normal or perpendicular geodesics all converge asymptotically in the same direction. It is the two-dimensional case of a horosphere (or orisphere). The centre of a horocycle is the ideal point where all normal geodesics asymptotically converge. Two horocycles who have the same centre are concentric. Although it appears as if two concentric horocycles cannot have the same length or curvature, in fact any two horocycles are congruent.
In hyperbolic geometry, a horosphere (or parasphere) is a specific hypersurface in hyperbolic n-space. It is the boundary of a horoball, the limit of a sequence of increasing balls sharing (on one side) a tangent hyperplane and its point of tangency. For n = 2 a horosphere is called a horocycle. A horosphere can also be described as the limit of the hyperspheres that share a tangent hyperplane at a given point, as their radii go towards infinity.
In mathematics, the Poincaré metric, named after Henri Poincaré, is the metric tensor describing a two-dimensional surface of constant negative curvature. It is the natural metric commonly used in a variety of calculations in hyperbolic geometry or Riemann surfaces. There are three equivalent representations commonly used in two-dimensional hyperbolic geometry. One is the Poincaré half-plane model, defining a model of hyperbolic space on the upper half-plane. The Poincaré disk model defines a model for hyperbolic space on the unit disk.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...).Proofs of
Flow in complex karst aquifers is challenging to conceptualize and model, especially in poorly investigated areas, in semiarid climates, and under changing climatic conditions; however, it is necessary in order to implement long-term sustainable water mana ...
2020
,
Consider CLE4 in the unit disk, and let l be the loop of the CLE4 surrounding the origin. Schramm, Sheffield and Wilson determined the law of the conformal radius seen from the origin of the domain surrounded by l. We complement their result by determining ...
Previous studies on the modelling of coupled thermo-hydro-mechanical (THM) processes in bentonite-based engineered barrier systems (EBSs) showed the sensitivity of the output quantities to changes in the input parameters. To investigate the effects of unce ...