Concept

Disque de Poincaré

Résumé
En géométrie, le disque de Poincaré (appelé aussi représentation conforme) est un modèle du plan hyperbolique, ou plus généralement de la géométrie hyperbolique à n dimensions, où les points sont situés dans la boule unité ouverte de dimension n et les droites sont soit des arcs de cercles contenus dans cette boule et orthogonaux à sa frontière, soit des diamètres de la boule. En plus du modèle de Klein et du demi-plan de Poincaré, il a été proposé par Eugenio Beltrami pour démontrer que la consistance de la géométrie hyperbolique était équivalente à la consistance de la géométrie euclidienne. Si u et v sont deux vecteurs de l'espace à n dimensions Rn muni de la norme euclidienne, de norme inférieure à 1, alors il est possible de définir un invariant isométrique de la façon suivante : où est la norme euclidienne. Alors la fonction distance est définie par Une telle fonction définit alors un espace métrique qui est un modèle d'espace hyperbolique de courbure constante -1. Pour ce modèle, l'angle entre deux courbes qui se coupent dans l'espace hyperbolique est le même que l'angle du modèle. La métrique locale du disque de Poincaré en un point de coordonnées est donnée par la formule suivante : de sorte que, localement, cette métrique est équivalente à une métrique euclidienne du modèle. En particulier, l'angle entre deux droites du plan hyperbolique est exactement le même que l'angle euclidien entre les deux arcs de cercle du modèle. Le disque de Poincaré, comme le modèle de Klein, a un rapport avec le modèle de l'hyperboloïde. Il est possible de projeter le point [t, x1, ... , xn] de la nappe supérieure du modèle hyperboloïde sur l'hypersurface t = 0 en l'intersectant avec une droite passant par [-1, 0, ... , 0]. Le résultat est le point correspondant du disque de Poincaré. Un problème de base en géométrie analytique consiste à trouver une droite passant par deux points. Avec le disque de Poincaré, les droites sont des arcs de cercles qui ont des équations de cette forme : qui est la forme générale d'un cercle orthogonal au cercle unité, ou des diamètres.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.