In computer programming, explicit parallelism is the representation of concurrent computations by means of primitives in the form of special-purpose directives or function calls. Most parallel primitives are related to process synchronization, communication or task partitioning. As they seldom contribute to actually carry out the intended computation of the program, their computational cost is often considered as parallelization overhead. The advantage of explicit parallel programming is the absolute programmer control over the parallel execution. A skilled parallel programmer takes advantage of explicit parallelism to produce very efficient code. However, programming with explicit parallelism is often difficult, especially for non computing specialists, because of the extra work involved in planning the task division and synchronization of concurrent processes. In some instances, explicit parallelism may be avoided with the use of an optimizing compiler that automatically extracts the parallelism inherent to computations (see implicit parallelism).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.