**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# A 16-bit Floating-Point Near-SRAM Architecture for Low-power Sparse Matrix-Vector Multiplication

David Atienza Alonso, Giovanni Ansaloni, Grégoire Axel Eggermann, Marco Antonio Rios

2023

Conference paper

2023

Conference paper

Abstract

State-of-the-art Artificial Intelligence (AI) algorithms, such as graph neural networks and recommendation systems, require floating-point computation of very large matrix multiplications over sparse data. Their execution in resource-constrained scenarios, like edge AI systems, requires a) careful optimization of computing patterns, leveraging sparsity as an opportunity to lower computational requirements, and b) using dedicated hardware. In this paper, we introduce a novel near-memory floating-point computing architecture dedicated to the parallel processing of sparse matrix-vector multiplication (SpMV). This architecture can be integrated at the periphery of memory arrays to exploit the inherent parallelism of memory structures to speed up computation. In addition, it uses its proximity to memory to achieve high computational capability and very low latency. The illustrated implementation, operating at 1GHz, can compute up to 370 MFLOPS (millions of floating-point operations per second) while computing SpMV multiplications, while incurring a modest 17% area overhead when interfaced with a 4KB SRAM array.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (18)

Related concepts (40)

Related publications (56)

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Matrix (mathematics)

In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.

Computational complexity of matrix multiplication

In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the right amount of time it should take is of major practical relevance. Directly applying the mathematical definition of matrix multiplication gives an algorithm that requires n3 field operations to multiply two n × n matrices over that field (Θ(n3) in big O notation).

Floating-point arithmetic

In computing, floating-point arithmetic (FP) is arithmetic that represents subsets of real numbers using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. Numbers of this form are called floating-point numbers. For example, 12.345 is a floating-point number in base ten with five digits of precision: However, unlike 12.345, 12.3456 is not a floating-point number in base ten with five digits of precision—it needs six digits of precision; the nearest floating-point number with only five digits is 12.

Ontological neighbourhood

Smart contracts have emerged as the most promising foundations for applications of the blockchain technology. Even though smart contracts are expected to serve as the backbone of the next-generation web, they have several limitations that hinder their wide ...

, , , ,

Compute memories are memory arrays augmented with dedicated logic to support arithmetic. They support the efficient execution of data-centric computing patterns, such as those characterizing Artificial Intelligence (AI) algorithms. These architectures can ...

2023Anastasia Ailamaki, Viktor Sanca

Modern data management systems aim to provide both cutting-edge functionality and hardware efficiency. With the advent of AI-driven data processing and the post-Moore Law era, traditional memory-bound scale-up data management operations face scalability ch ...

2023