In causal inference, a confounder (also confounding variable, confounding factor, extraneous determinant or lurking variable) is a variable that influences both the dependent variable and independent variable, causing a spurious association. Confounding is a causal concept, and as such, cannot be described in terms of correlations or associations. The existence of confounders is an important quantitative explanation why correlation does not imply causation. Some notations are explicitly designed to identify the existence, possible existence, or non-existence of confounders in causal relationships between elements of a system.
Confounds are threats to internal validity.
Confounding is defined in terms of the data generating model. Let X be some independent variable, and Y some dependent variable. To estimate the effect of X on Y, the statistician must suppress the effects of extraneous variables that influence both X and Y. We say that X and Y are confounded by some other variable Z whenever Z causally influences both X and Y.
Let be the probability of event Y = y under the hypothetical intervention X = x. X and Y are not confounded if and only if the following holds:
for all values X = x and Y = y, where is the conditional probability upon seeing X = x. Intuitively, this equality states that X and Y are not confounded whenever the observationally witnessed association between them is the same as the association that would be measured in a controlled experiment, with x randomized.
In principle, the defining equality can be verified from the data generating model, assuming we have all the equations and probabilities associated with the model. This is done by simulating an intervention (see Bayesian network) and checking whether the resulting probability of Y equals the conditional probability . It turns out, however, that graph structure alone is sufficient for verifying the equality .
Controlling for a variable
Consider a researcher attempting to assess the effectiveness of drug X, from population data in which drug usage was a patient's choice.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
This course provides an introduction to experimental statistics, including use of population statistics to characterize experimental results, use of comparison statistics and hypothesis testing to eva
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
Internal validity is the extent to which a piece of evidence supports a claim about cause and effect, within the context of a particular study. It is one of the most important properties of scientific studies and is an important concept in reasoning about evidence more generally. Internal validity is determined by how well a study can rule out alternative explanations for its findings (usually, sources of systematic error or 'bias').
External validity is the validity of applying the conclusions of a scientific study outside the context of that study. In other words, it is the extent to which the results of a study can be generalized to and across other situations, people, stimuli, and times. In contrast, internal validity is the validity of conclusions drawn within the context of a particular study. Because general conclusions are almost always a goal in research, external validity is an important property of any study.
In statistics, latent variables (from Latin: present participle of lateo, “lie hidden”) are variables that can only be inferred indirectly through a mathematical model from other observable variables that can be directly observed or measured. Such latent variable models are used in many disciplines, including political science, demography, engineering, medicine, ecology, physics, machine learning/artificial intelligence, bioinformatics, chemometrics, natural language processing, management, psychology and the social sciences.
We consider optimal regimes for algorithm-assisted human decision-making. Such regimes are decision functions of measured pre-treatment variables and, by leveraging natural treatment values, enjoy a superoptimality property whereby they are guaranteed to o ...
Background Disrupted sense of agency (SoA)-the sense of being the agent of one's own actions-has been demonstrated in patients with functional neurological disorder (FND), and a key area of the corresponding neuronal network is the right temporoparietal ju ...
London2024
, , , ,
Background. Inducing hallucinations under controlled experimental conditions in nonhallucinating individuals represents a novel research avenue oriented toward understanding complex hallucinatory phenomena, avoiding confounds observed in patients. Audito ...