Pentagonal number theoremIn mathematics, the pentagonal number theorem, originally due to Euler, relates the product and series representations of the Euler function. It states that In other words, The exponents 1, 2, 5, 7, 12, ... on the right hand side are given by the formula gk = k(3k − 1)/2 for k = 1, −1, 2, −2, 3, ... and are called (generalized) pentagonal numbers . (The constant term 1 corresponds to .) This holds as an identity of convergent power series for , and also as an identity of formal power series.
Srinivasa RamanujanSrinivasa Ramanujan (ˈsriːnᵻvɑːsə_rɑːˈmɑːnʊdʒən ; born Srinivasa Ramanujan Aiyangar, sriːniʋaːsa ɾaːmaːnud͡ʑan ajːaŋgar; 22 December 1887 26 April 1920) was an Indian mathematician. Though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then considered unsolvable. Ramanujan initially developed his own mathematical research in isolation.
Euler functionIn mathematics, the Euler function is given by Named after Leonhard Euler, it is a model example of a q-series and provides the prototypical example of a relation between combinatorics and complex analysis. The coefficient in the formal power series expansion for gives the number of partitions of k. That is, where is the partition function. The Euler identity, also known as the Pentagonal number theorem, is is a pentagonal number.
Dedekind eta functionIn mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory. For any complex number τ with Im(τ) > 0, let q = e2πiτ; then the eta function is defined by, Raising the eta equation to the 24th power and multiplying by (2π)12 gives where Δ is the modular discriminant.
Partition (number theory)In number theory and combinatorics, a partition of a non-negative integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.) For example, 4 can be partitioned in five distinct ways: 4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1 The only partition of zero is the empty sum, having no parts.
Q-Pochhammer symbolIn mathematical area of combinatorics, the q-Pochhammer symbol, also called the q-shifted factorial, is the product with It is a q-analog of the Pochhammer symbol , in the sense that The q-Pochhammer symbol is a major building block in the construction of q-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series.
Lambert seriesIn mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form It can be resumed formally by expanding the denominator: where the coefficients of the new series are given by the Dirichlet convolution of an with the constant function 1(n) = 1: This series may be inverted by means of the Möbius inversion formula, and is an example of a Möbius transform. Since this last sum is a typical number-theoretic sum, almost any natural multiplicative function will be exactly summable when used in a Lambert series.
Rank of a partitionIn mathematics, particularly in the fields of number theory and combinatorics, the rank of a partition of a positive integer is a certain integer associated with the partition. In fact at least two different definitions of rank appear in the literature. The first definition, with which most of this article is concerned, is that the rank of a partition is the number obtained by subtracting the number of parts in the partition from the largest part in the partition.
Pentagonal numberA pentagonal number is a figurate number that extends the concept of triangular and square numbers to the pentagon, but, unlike the first two, the patterns involved in the construction of pentagonal numbers are not rotationally symmetrical. The nth pentagonal number pn is the number of distinct dots in a pattern of dots consisting of the outlines of regular pentagons with sides up to n dots, when the pentagons are overlaid so that they share one vertex.
Generating functionIn mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem.