Solid-state lighting (SSL) is a type of lighting that uses semiconductor light-emitting diodes (LEDs), organic light-emitting diodes (OLED), or polymer light-emitting diodes (PLED) as sources of illumination rather than electrical filaments, plasma (used in arc lamps such as fluorescent lamps), or gas.
Solid state electroluminescence is used in SSL, as opposed to incandescent bulbs (which use thermal radiation) or fluorescent tubes. Compared to incandescent lighting, SSL creates visible light with reduced heat generation and less energy dissipation. Most common "white LEDs” convert blue light from a solid-state device to an (approximate) white light spectrum using photoluminescence, the same principle used in conventional fluorescent tubes.
The typically small mass of a solid-state electronic lighting device provides for greater resistance to shock and vibration compared to brittle glass tubes/bulbs and long, thin filament wires. They also eliminate filament evaporation, potentially increasing the life span of the illumination device.
Solid-state lighting is often used in traffic lights and is also used in modern vehicle lights, street and parking lot lights, train marker lights, building exteriors, remote controls etc. Controlling the light emission of LEDs may be done most effectively by using the principles of nonimaging optics. Solid-state lighting has made significant advances in industry. In the entertainment lighting industry, standard incandescent tungsten-halogen lamps are being replaced by solid-state lighting fixtures.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Series of lectures covering the physics of quantum heterostructures (including quantum dots), microcavities and photonic crystal cavities as well as the properties of the main light emitting devices t
An LED lamp or LED light is an electric light that produces light using light-emitting diodes (LEDs). LED lamps are significantly more energy-efficient than equivalent incandescent lamps and can be significantly more than most fluorescent lamps. The most efficient commercially available LED lamps have efficiencies exceeding 200 lumens per watt (lm/W) and convert more than half the input power into light. Commercial LED lamps have a lifespan several times longer than both incandescent and fluorescent lamps.
A light fixture (US English), light fitting (UK English), or luminaire is an electrical device containing an electric lamp that provides illumination. All light fixtures have a fixture body and one or more lamps. The lamps may be in sockets for easy replacement—or, in the case of some LED fixtures, hard-wired in place. Fixtures may also have a switch to control the light, either attached to the lamp body or attached to the power cable. Permanent light fixtures, such as dining room chandeliers, may have no switch on the fixture itself, but rely on a wall switch.
Lighting or illumination is the deliberate use of light to achieve practical or aesthetic effects. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing daylight. Daylighting (using windows, skylights, or light shelves) is sometimes used as the main source of light during daytime in buildings. This can save energy in place of using artificial lighting, which represents a major component of energy consumption in buildings.
Explores the fundamentals and applications of Organic Light Emitting Diodes (OLEDs), covering device structures, energy diagrams, efficiency improvements, and OLED displays in commercial products.
Explores the physics of photonic semiconductor devices, including LEDs, laser diodes, and quantum cascade lasers, emphasizing essential concepts and practical applications.
Over the past decade, quantum photonics platforms aiming at harnessing the fundamental properties of single particles, such as quantum superposition and quantum entanglement, have flourished. In this context, single-photon emitters capable of operating at ...
Recent advances in biology and neuroscience have elucidated pathways in which visible light initiates a signaling process, via the eye, responsible for activating direct and indirect biological responses. While the full impact of unnatural light patterns ...
Near-infrared luminescent materials have recently received considerable attention for a large number of applications, including in solid-state lighting, as bioimaging agents, as photovoltaic cells, and in the telecommunication industry. By adding diverse e ...