Summary
Tritium () or hydrogen-3 (symbol T or ^3H) is a rare and radioactive isotope of hydrogen with a half-life of about 12 years. The nucleus of tritium (t, sometimes called a triton) contains one proton and two neutrons, whereas the nucleus of the common isotope hydrogen-1 (protium) contains one proton and zero neutrons, and that of hydrogen-2 (deuterium) contains one proton and one neutron. Naturally occurring tritium is extremely rare on Earth. The atmosphere has only trace amounts, formed by the interaction of its gases with cosmic rays. It can be produced artificially by irradiation of lithium metal or lithium-bearing ceramic pebbles in a nuclear reactor and is a low-abundance byproduct in normal operations of nuclear reactors. Tritium is used as the energy source in radioluminescent lights for watches, gun sights, numerous instruments and tools, and even novelty items such as self-illuminating key chains. It is used in a medical and scientific setting as a radioactive tracer. Tritium is also used as a nuclear fusion fuel, along with more abundant deuterium, in tokamak reactors and in hydrogen bombs. Tritium was first detected in 1934 by Ernest Rutherford, Mark Oliphant and Paul Harteck after bombarding deuterium with deuterons (a proton and neutron, comprising a deuterium nucleus). Deuterium is another isotope of hydrogen. However, their experiment could not isolate tritium, which was accomplished in 1939 by Luis Alvarez and Robert Cornog, who also realized tritium's radioactivity. Willard Libby recognized that tritium could be used for radiometric dating of water and wine. While tritium has several different experimentally determined values of its half-life, the National Institute of Standards and Technology lists 4,500 ± 8 days (12.32 ± 0.02 years). This implies that, per year, approximately 5.5% of a given sample of tritium will decay. It decays into helium-3 by beta-minus decay as per this nuclear equation: {| border="0" |- style="height:2em;" | ||→ || ||+ ||_Electron ||+ ||_Electron Antineutrino |} and it releases 18.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related MOOCs (7)
Plasma Physics and Applications [retired]
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics and Applications
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more