**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Star polygon

Summary

In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operations on regular simple and star polygons.
Branko Grünbaum identified two primary definitions used by Johannes Kepler, one being the regular star polygons with intersecting edges that don't generate new vertices, and the second being simple isotoxal concave polygons.
The first usage is included in polygrams which includes polygons like the pentagram but also compound figures like the hexagram.
One definition of a star polygon, used in turtle graphics, is a polygon having 2 or more turns (turning number and density), like in spirolaterals.
Star polygon names combine a numeral prefix, such as penta-, with the Greek suffix -gram (in this case generating the word pentagram). The prefix is normally a Greek cardinal, but synonyms using other prefixes exist. For example, a nine-pointed polygon or enneagram is also known as a nonagram, using the ordinal nona from Latin. The -gram suffix derives from γραμμή (grammḗ) meaning a line.
A "regular star polygon" is a self-intersecting, equilateral equiangular polygon.
A regular star polygon is denoted by its Schläfli symbol {p/q}, where p (the number of vertices) and q (the density) are relatively prime (they share no factors) and q ≥ 2. The density of a polygon can also be called its turning number, the sum of the turn angles of all the vertices divided by 360°.
The symmetry group of {n/k} is dihedral group Dn of order 2n, independent of k.
Regular star polygons were first studied systematically by Thomas Bradwardine, and later Johannes Kepler.
Regular star polygons can be created by connecting one vertex of a simple, regular, p-sided polygon to another, non-adjacent vertex and continuing the process until the original vertex is reached again. Alternatively for integers p and q, it can be considered as being constructed by connecting every qth point out of p points regularly spaced in a circular placement.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (8)

Related courses (6)

Related MOOCs (8)

Related concepts (23)

Related publications (31)

Related lectures (59)

CH-353: Introduction to electronic structure methods

Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbat

MATH-124: Geometry for architects I

Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept

CH-450: Solid state chemistry and energy applications

You will learn about the bonding and structure of several important families of solid state materials. You will gain insight into common synthetic and characterization methods and learn about the appl

Ontological neighbourhood

:

Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette

Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette

Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a straight line), if the edge length is fixed. These properties apply to all regular polygons, whether convex or star.

In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star".

A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle around the five points creates a similar symbol referred to as the pentacle, which is used widely by Wiccans and in paganism, or as a sign of life and connections. The word "pentagram" refers only to the five-pointed star, not the surrounding circle of a pentacle.

Explores crystal structure visualization using Vesta software for CCP and HCP arrangements.

Explores the definitions and symmetries of regular polyhedra, shedding light on ancient geometry and modern mathematical formalization.

Explores the solution of the Schrödinger equation for many-electron systems using basis sets and the concept of basis functions.

This paper proposes a method for the construction of quadratic serendipity element (QSE) shape functions on planar convex and concave polygons. Existing approaches for constructing QSE shape functions are linear combinations of the pair-wise products of ge ...

Alfio Quarteroni, Francesca Bonizzoni

This spreading of prion proteins is at the basis of brain neurodegeneration. This paper deals with the numerical modelling of the misfolding process of a-synuclein in Parkinson's disease. We introduce and analyse a discontinuous Galerkin method for the sem ...

Pascal Fua, Nicolas Talabot, Subeesh Vasu, Artem Lukoianov

Deep implicit surfaces excel at modeling generic shapes but do not always capture the regularities present in manufactured objects, which is something simple geometric primitives are particularly good at. In this paper, we propose a representation combinin ...

2022