Summary
Chemometrics is the science of extracting information from chemical systems by data-driven means. Chemometrics is inherently interdisciplinary, using methods frequently employed in core data-analytic disciplines such as multivariate statistics, applied mathematics, and computer science, in order to address problems in chemistry, biochemistry, medicine, biology and chemical engineering. In this way, it mirrors other interdisciplinary fields, such as psychometrics and econometrics. Chemometrics is applied to solve both descriptive and predictive problems in experimental natural sciences, especially in chemistry. In descriptive applications, properties of chemical systems are modeled with the intent of learning the underlying relationships and structure of the system (i.e., model understanding and identification). In predictive applications, properties of chemical systems are modeled with the intent of predicting new properties or behavior of interest. In both cases, the datasets can be small but are often large and complex, involving hundreds to thousands of variables, and hundreds to thousands of cases or observations. Chemometric techniques are particularly heavily used in analytical chemistry and metabolomics, and the development of improved chemometric methods of analysis also continues to advance the state of the art in analytical instrumentation and methodology. It is an application-driven discipline, and thus while the standard chemometric methodologies are very widely used industrially, academic groups are dedicated to the continued development of chemometric theory, method and application development. Although one could argue that even the earliest analytical experiments in chemistry involved a form of chemometrics, the field is generally recognized to have emerged in the 1970s as computers became increasingly exploited for scientific investigation. The term 'chemometrics' was coined by Svante Wold in a 1971 grant application, and the International Chemometrics Society was formed shortly thereafter by Svante Wold and Bruce Kowalski, two pioneers in the field.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (6)
Partial least squares regression
Partial least squares regression (PLS regression) is a statistical method that bears some relation to principal components regression; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space. Because both the X and Y data are projected to new spaces, the PLS family of methods are known as bilinear factor models.
Natural product
A natural product is a natural compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life. Natural products can also be prepared by chemical synthesis (both semisynthesis and total synthesis) and have played a central role in the development of the field of organic chemistry by providing challenging synthetic targets.
Chemometrics
Chemometrics is the science of extracting information from chemical systems by data-driven means. Chemometrics is inherently interdisciplinary, using methods frequently employed in core data-analytic disciplines such as multivariate statistics, applied mathematics, and computer science, in order to address problems in chemistry, biochemistry, medicine, biology and chemical engineering. In this way, it mirrors other interdisciplinary fields, such as psychometrics and econometrics.
Show more
Related courses (1)
MICRO-513: Signal processing for functional brain imaging
Computational methods for the analysis of human brain imaging data
Related lectures (1)
Principal Component Analysis: Applications and Limitations
Explores the applications and limitations of Principal Component Analysis, including denoising, compression, and regression.